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Abstract

We numerically estimate the superposition of the HOMFLY-PT poly-
nomial of an open two compnent link, define its spread, and describe how
this quantity may be employed to quantify the degree of entanglement of
confined two component open links.

1 Introduction

Many physical materials are composed of filamentous structures, such as macro-
molecules, and are mathematically modeled as collections of open simple curves
in space. The entanglement of these molecules, reflected in the entanglement
of the modeled curves, has a significant influence on the mechanical proper-
ties and function of such materials [4, 3, 26]. However, it has been a challenge
to rigorously define a mathematical measure of entanglement is such systems.
Panagiotou, [22, 21, 19] has employed the Gauss linking integral to create mea-
sures of entanglement in periodic boundary condition models of such systems.
For the case of a single curve, i.e. an open knot, Millett et al. [14, 15], used
the HOMFLY-PT [6] knot polynomial to define the probability distribution of
knot types on the ensemble of closures of the endpoints of the curve over the
2-sphere of directions in space giving spectrum of the open knot and its domi-
nate knot types. The superposition of this spectrum defines the average of the
HOMFLY-PT polynomials of the ensemble of closures. Panagiotou and Kauff-
man [9] provide a rigorous definition of the Jones [8] polynomial of open chains
via averaging the Jones polynomial of projections of an open curve (thereby
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defining a knotoid) over all possible projection directions. The Jones polyno-
mial of open curves is a polynomial with real coefficients that are continuous
functions of the chain coordinates. As the endpoints of the chain tend to coin-
cidence they converge to those of the Jones polynomial of the resulting closed
curve. Note that the definition of the HOMFLY-PT polynomial of open arc
diagrams (knotoids) is not yet defined. As a consequence, we employ an exten-
sion of the MDS method [14] for knots to the case of open links. Thus, whereas
the superposition of the HOMFLY-PT S2 pdf of MDS gave the average closure
HOMFLY-PT polynomial of the knot, the superposition of the HOMFLY-PT
S2×S2 pdf of closures of the two component open link gives the aveage closure
HOMFLY-PT polynomial of the link.

We compare our results to those provided by an application of the Gauss
linking number employed in the study of entanglement of polymer gels, [19].

Our estimation of the average HOMFLY-PT is achieved by determining the
HOMFLY-PT polynomial and, therefore, the associated oriented link type at
each pair of points in an independent uniformly distributed collection of 49 clo-
sure directions on each of the two spheres thereby giving a collection of 2401
samples. One can understand this procedure as providing an estimation of
the integration of the HOMFLY-PT on the S2 × S2 space of pairs of closure
directions divided by the four dimensional volume of S2 × S2. One of the fun-
damental properties of this method is that the proportion of link types of pairs
of open chains converges to that of the closed chains as the distance between
the two termini of each chain, respectively, goes to zero. We will explore this
convergence in the case of a Hopf link.

As was observed in the study of protein structures, the linking spectrum
depends on the specific geometry of the chain [15, 27, 25]. To examine the effect
of the local geometry, we will consider the influence of the location of the gap in
a closed chain as well as the effect of the spatial geometry of the chain. We will
also study HOMFLY-PT polynomial of random pair of disjoint random walks,
i.e. a random pair of disjoint equilateral polygons, in the 3-ball as their length
increases.

This paper is organized as follows: In Section 2, by way of introduction to
the study of complex two component open links, we study the link spectrum of
an open Hopf link and its dependence on the location of the endpoints of the
open link. In Section 3, we describe the foundation of our analysis starting with
the definition of the average closure HOMFLY-PT polynomial of an open two
compent links in 3-space. In Section 4, we present results on the HOMFLY-PT
polynomial of confined open two component links.

2 The HOMFLY-PT polynomial of open Hopf
links

The HOMFLY-PT polynomial of a closed negative Hopf link, Figure 1, is
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Figure 1: For a closed negative Hopf link, the HOMFLY-PT polynomial is:
(`+ `3) m−1 − ` m.

(`+ `3) m−1 − ` m

.

The polynomial of the mirror reflection, the closed positive Hopf link, is
given by replacing ` by `−1 giving

(`−3 + `−1) m−1 − `−1 m

.

To illustrate the properties of the average HOMFLY-PT polynomial, we
apply our method to the case of open Hopf links for a small collection of gap
openings in the closed link. The collection of 2401 closures can contain links of
different topological types, see Figure 2. For a fixed gap size, the character of
the entanglement, as reflected in the average HOMFLY-PT of open Hopf links
can vary, depending on the location of the gap, see Figure 3 and Table 1. In
these instances one observes that the dominate terms are those of the Hopf link
and the secondary terms reflect the varying position of the gap.

2.1 Convergence as gap length goes to zero

As the gap, the segment connecting the termini, lengths of an open two com-
ponent link go to zero we know the link type converges to the closed link type,
i.e. the proportion of closures having the link type as the closed link goes to
1. What is the nature of this convergence, for example, how is this reflected in
the evolution of the average HOMFLY-PT polynomial? Suppose one considers
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Figure 2: The HOMFLY-PT and Kauffman polynomials of the simplest closed
links [13]

Open Hopf link average HOMFLY-PT polynomial Gauss linking
A (0.001666`−3 − 0.088432`−1 + 0.824656`+ 0.909204`3) m−1 0.930618

+(0.001249`−1 − 0.905873`) m− 0.001666`−1 m3

B (0.158251`−3 − 0.4679854`−1 − 0.406038`+ 0.218636`3) m−1 0.013390
+(−0.156689`−1 − 0.218636`) m

C (0.079966`−3 − 0.392753`−1 − 0.0320699`+ 0.439400`3) m−1 0.444706
+(−0.0787172`−1 − 0.439400`) m

D (0.027072`−3 − 0.252395`−1 + 0.403582`+ 0.681799`3) m−1 0.729073
+(−0.258226`−1 − 0.6817993`) m

E (0.001666`−3 − 0.09745939`−1 + 0.78842149`+ 0.8875468`3) m−1 0.86317
+(−0.001666`−1 − 0.8875468`) m

Table 1: The average HOMFLY-PT polynomials and Gauss linking numbers for
the open Hopf links shown in Figure 3.

a polygonal positive Hopf link, see Figures 3 and associated data tables. We
show what happens to the proportion of 021’s, ±221’s, and 421’s as the gap length
decreases in Figure 4. Curiously, the limiting +221 is less likely than −221 when
this particular gap becomes large.
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Figure 3: (A) A partial open negative Hopf link A: 49×49 closures give 021, ±221,
±421, and 521 link types, Table 2 in the appendix. (B) The partial open positive
Hopf link B: closures give 021 and ±221, link types. The gap is 1.66294, Table 3.
(C) The partial open positive Hopf link C: closures give 021, ±221, and 421 link
types. The gap is 1.17286, Table 4. (D) The partial open positive Hopf link D:
closures give 021, ±221, and 421 link types. The gap is 0.390177, Table 5. (E) The
partial open positive Hopf link E: closures give 021, ±221, and 421 link types. The
gap is 0.196034, Table 6.
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Figure 4: The proportion of link types for the closures as a function of the gap
size: 021; dashed, 221; solid, −221; dash-dot, 421; dotted and 421; large dashed.

Figure 5: The proportion of positive Hopf links, solid, and the Gauss linking
number, dashed, versus the gap.
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3 Measures of Linking and Entanglement

In this section we will review the classical Gauss linking number, and we will
explore how the average HOMFLY-PT polynomial can be used to quantify the
entanglement present in two component links.

3.1 The Gauss linking number

The Gauss linking integral defines a linking number for a pair of disjoint oriented
chains, closed or open, L1 and L2, described by piecewise C1 parameterizations,
γ1(t) and γ2(s), 0 ≤ t, s ≤ 1, is defined by the double integral:

Lk(L1, L2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dtds, (1)

where (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) is the triple product of the derivatives, γ̇1(t)
and γ̇2(s), and of the difference γ1(t)− γ2(s).

While this is an integer for closed chains, it is a real number that captures the
linking of a pair of oriented open chains finding application in many scientifically
important context such as polymer melt models empolying periodic boundary
conditions; Panagiotou [22, 21, 19, 2]; complex systems such as Olympic gels
[7]; protein structures [24, 23, 17, 18]. In Graph 5, we compare the proportion
of positive Hopf links and the Gauss linking number.

For example, the Gauss linking number of the oriented open link shown in
Figure 15 is 1.12954.

3.2 The average HOMFLY-PT polynomial as a measure
of entanglement

We propose to define the average HOMFLY-PT of a pair of oriented open curves
in 3-space as the superposition HOMFLY-PT polynomial over the pdf of S2×S2

independent closures for pairs of chains thereby providing a new quantification
of the degree of entanglement present in the link. In the following we will
examine the relationship between the Gauss linking integral and the average
HOMFLY-PT polynomial.

3.2.1 The presence of the Gauss linking number in the HOMFLY-
PT polynomial of a closed link

Suppose that L = {L1, L2, ..., Lc} is an oriented closed link of c components and
λ is the total Gauss linking number of L, i.e. the sum of the c(c-1)/2 pairs of
linking numbers between distinct components of L. Collecting the powers of m,
we may express the HOMFLY-PT polynomial of L by

PL(`,m) = Σj=1−c pj(`) m
j
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and of any component Li by,

PLi(`,m) = Σj=0 p
i
j(`) m

j

The following proposition is proved in [12]:

Proposition 3.1. Proposition 22 [12] For an oriented link L, the powers of `
and m which appear in PL are all even or all odd, depending upon whether the
number of components of L, c, is odd or even, respectively. The exponent of the
lowest power of m which appears is precisely 1 - c. It has the coefficient

p1−c(`) = (−`2)−λ(−(`−1 + `))c−1Πc
i=1p

i
0(`).

where λ is the total Gauss linking number of L, i.e. the sum of the c(c-1)/2
pairs of linking numbers between distinct components of L.

For example, for the negative Hopf link, Figure 1, one has

p−1(`) = (−`2)1(−(`−1 + `))1 = `+ `3.

Due to the simplicity of the open Hopf links conformations analyzed here, one
can detect the HOMFLY-PT polynomial of the closures by inspection of Table 1.
One observes that the dominant terms in the average HOMFLY-PT polynomial
over the 2401 closures correspond to these powers of ` and the proportion of
closures that give the negative Hopf link. We obseve that this relationship to
the closed negative Hopf link is equally reflected in the coefficient of the `m
term, again due to the simplicity of these links.

We have seen how to extend the Gauss linking number to collections of
oriented open chains. Here, we consider if this proposition can be extended to
oriented open links. Consider the oriented open two component polygonal link,
RL6 = {L1, L2} in Figure 15, where we can estimate PRL6, PRL61 , and PRL62 .

In the case of open chains, the estimates of p−1(`), p10(`), and p20(`) are,
individually, the superposition of a complex collection of terms each of which
come from the closures of these open chains. While the term (−(`−1 + `)) is
common to all and, therefore, would appear in the left side of the expression,
the resulting total expression reflects the superposition of a collection of tems in
which the linking number depends on the closures as do each of the polynomials
of the individual components. As a consequence, due to the complexity of
the links, one can only propose that the coefficient, p1−c(`), is average of the
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equation 3.2.1 applied to the S2×S2 closures of the two component open oriented
links. Consider the case of RL6, Figure 15.

p−1(`) = (0.000416`−9−0.011291`−7−0.284465`−5+0.319034`−3+0.449396`−1−
0.155352`− 0.005831`3)

p10(`) = (−0.000781`−4 − 0.014531`−2 + 0.964219− 0.032656`2 − 0.0090625`4)

p20(`) = (0.000313`−6− 0.00875`−4− 0.0185937`−2 + 0.989219− 0.02046875`2−
0.00109375`4)

(−`2)−1(−(`−1+`))p10(`)p20(`) ≈ (0.00044574`−9−0.00850606`−7−0.0409534`−5+
0.922805`−3 + 0.902953`−1 − 0.0612069`− 0.00912977`3 + 0.000231128`5).

In the final product expression, the unknotted character of the two compo-
nents is strongly reflected in the `−3 and `−1 coefficients whilst, it seems, this
is lost in p−1 of the link, at least is so far as one might anticipate a relationship
of the type expressed in the proposition manifested in coefficients. This diver-
gence illustrates the strong entanglement complexity mixing the Gauss linking
and the superposition of the HOMFLY-PT polynomials of the two component
link closures.

3.2.2 The HOMFLY-PT polynomial

In the previous section we discussed the relationship between the m−1 term of a
two component chain, the two m0 terms of the two individual components, and
the Gauss linking number of the two components, Prop 22 [12]. While we do not
know of an anologous relationship reflected in the higher order components of
the HOMFLY-PT polynomial examples show that they reflect the complexity
of the entanglement of the two components, see Figure 2 and, for example,
the Whitehead link 521. Note that these classical link examples illustrate the
conclusions of Prop 22, e.g. compare the initial terms of the trivial link and
the Whitehead link. Furthermore, in reversing the orientation of the Solomon
link 421, one does not merely change ` to 1

` but there are higher order term
consequences illustrating the HOMFLY-PT polynomial sensitivity to linking
beyond the linking number, even for unknotted components or homologically
unlinked cases such as the trivial link and the Whitehead link. As a consequence,
one anticipates reflections of these complexities in the spectrum of closures of
open two component links.
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3.2.3 An open link example

As discussed earlier, we have found that, for open links, the relationship for
classical closed links described in Prop 22 holds for open links in the sense that
it is a convolution of Gauss linking terms and those coming from the HOMFLY-
PT polynomials of the individual chains of the closure spectrum. Consider the
average HOMFLY-PT polynomial for RL6, an open oriented two component
case discussed earlier,

PRL61 = (−0.000781`−4−0.014531`−2 +0.964219−0.032656`2−0.0090625`4)+
(0.0007813`−2 + 0.0129687 + 0.0090625`2)m2

PRL62 = (0.000313`−6−0.00875`−4−0.0185937`−2 +0.989219−0.02046875`2−
0.00109375`4) + (0.00906245`−2 + 0.00015625 + 0.00109375`2)m2

PRL61,2 = (0.000416`−9−0.011291`−7−0.284465`−5+0.319034`−3+0.449396`−1−
0.155352` − 0.005831`3) m−1 + (−0.001249`−7 + 0.231570`−5 + 0.694711`−3 −
0.626405`−1+0.029155`+0.010412`3)m+(0.000833`−5−0.209913`−3+0.020824`−1−
0.002082`)m3 − 0.009996`−1m5

In RL61 and RL62 we observe a demonstration of the dominant unknotting
character of the chains and, in RL61, 2 the strongly entangled character of the
two chain conformation. In order to quantify the extent of complexity of the
HOMFLY-PT we propose to employ the spread of the polynomial. This new
measure of the complexity of a finite integral Laurent polynomial, such as the
HOMFLY-PT,

P (`,m) =

i=k,j=n∑
i=−k,j=−n

ai,j`
imj

is defined as follows:
Each point with coordinates (i, j) of the 2k × 2n 2-dimensional integral lattice
given the value |ai,j |. In analogy with a physical system, we determine the total
mass, M , and the ‘”center of mass”, (µ`, µm) of this system:

M =

i=k,j=n∑
i=−k,j=−n

|ai,j |

(µ`, µm) =
1

M

i=k,j=n∑
i=−k,j=−n

|ai,j |(i, j)

10



We then define the spread of P (`,m) in analogy with squared radius of gyration
of a physical system:

sp(P (`,m)) =
1

M

i=k,j=n∑
i=−k,j=−n

|ai,j |((i− µ`)2 + (j − µm)2)

In the present case the spread of PRL61,2(`,m) is 44.2135 which one may
compare with that of the positive Hopf link polynomial having spread 15.7292.
Recall that the positive Hopf link has Gauss linking number 1 while RL6 has
a comparable Gauss linking number of 1.12954 thereby illustrating the interest
in this new measure of entanglement.

4 Random Confined Open Two Component Links

The HOMFLY-PT polynomial of open two component links provides a new
method to quantify the extent of entanglement of polymer chains in a melt. This
has long been an objective of researchers concerned with the nature of material
systems in engineering, chemistry, biology, and physics. Model conformations
of polymers of polymers can be obtained using computer simulations. From a
historical perspective, one strategy has been to “tighten” the system of open
chains, without moving termini, so as to localize physical obstructions at isolated
points, called “entanglements”, that are then used to characterize the system
[26]. The topology of knots and links in systems composed of closed chains have
been used to assess the presence of entanglement using the algebraic topology
of the Gauss linking number [17]. The linking number has been extended to
systems of oriented open chains using the Gauss linking integral [20]. Scaling
characteristics of polymer chains can be obtained by studying random walks.
In particular, the behavior of random walks in confined spaces can provide
information about similarly confined polymer chains such as biopolymers in a
cell. Here, we apply this thinking to pairs of random walks whose inital termini
lie within a ball of fixed radius, with a uniform distribution, and are confined
to lie in this ball. For example, consider the case of walks with 15, 20, 25, 30,
and 40 steps, see Figures 7, 9, 11, 13, and 15, respectively. In Figure 6, we show
the growth of the average absolute value of the Gauss linking number of such
chains as a function of the length of the chains.

4.1 Discussion of the HOMFLY-PT polynomials of two
component link examples

For single open chains, such as these, the classical knot theory has been extended
to open arcs whereby one considers the distribution of knot types, the knot
spectrum, defined by collection of closures of the arc termini over the two sphere
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Figure 6: The average absolute value of the Gauss linking number of two random
walks confined to a ball of radius 4, as a function of the length of the walks, n.
The linear growth is −0.00834 + 0.118216n with R2 = 0.9994, [20].

of directions [14]. As mentioned earlier, Kauffman and Panagioutou [9] describe
a theory that defines an average of the Jones polynomial of an open chain over
all projection directions. In this paper we propose to associate a HOMFLY-PT
polynomial to an open arc by taking the average of the HOMFLY-PT polynomial
over all closure directions of an open arc, i.e. the superposition of the knotting
spectrum of [14]. Moreover, we propose to associate a HOMFLY-PT polynomial
to a pair of oriented open arcs by taking the superposition of the HOMFLY-
PT polynomials over all the independent closure directions of the open arcs,
thereby taking a superposition of their linking spectrum. This method extends
to collections of oriented open chains. Here, we apply this thinking to pairs of
random walks whose inital termini lie within a ball of a fixed radius, with a
uniform distribution, and are confined to lie within this ball. For example, in
the case of a pair of 15 step random walks, Figure 7, the Gauss linking number
is 1.0892, and the spectrum is given in Table 7. The average HOMFLY-PT
polynomial is

(−0.130362`−5 + 0.583507`−3 + 0.576426`−1 − 0.132028` + 0.004165`3) m−1 +
(0.075385`−5 + 0.284465`−3 − 0.761000`−1 + 0.0008330`) m+ (−0.075385`−3 −
0.003319`−1 − 0.000833`)m3

whose spread is 28.87. The spectrum of this link is illustrated in Figure 8.

In order to illustrate this new approach to quantifying the growth in entan-
glement complexity as the length of the chains grows, we first share examples
with increasing chain length. In the case of a pair of 20 step random walks,
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Figure 9, The Gauss linking number is -0.0456613, and the specturum is given
Table 8. The average HOMFLY-PT polynomial is

(−0.007189`−5 + 0.100000`−3− 0.633333`−1− 0.6000000`+ 0.138562`3) m−1 +
(0.0071895`−5 +0.022222`−3−0.103922`−1−0.137908`) m+(−0.0071895`−3−
0.0006536`−1)m3

whose spread is 5.28712. The spectrum of this link is illustrated in Figure 10.

In the case of a pair of 25 step random walks, Figure 11, The Gauss linking
number is -1.85846, and the specturum is given Table 9. The average HOMFLY-
PT polynomial is

(−0.00249895`−5+0.0270721`−3−0.482716`−1−0.2082466`+0.3027905`3)m−1+
(0.00083299`−5+0.47938359`−3+0.9204498`−1+0.1724281`)m+(−0.000832986`−3−
0.4752187`−1)m3

whose spread is 23.02798. The spectrum of this link is illustrated in Figure 12.

In the case of a pair of 30 step random walks, Figure 13, The Gauss link-
ing number is 0.00715655, and the specturum is given Table 10. The average
HOMFLY-PT polynomial is

(−0.00249895`−5+0.0270721`−3−0.482716`−1−0.2082466`+0.3027905`3)m−1+
(0.00083299`−5+0.47938359`−3+0.9204498`−1+0.1724281`)m+(−0.000832986`−3−
0.4752187`−1)m3

whose spread is 3.94706. The spectrum of this link is illustrated in Figure 14.

The estimated HOMFLY-PT polynomial of the link RL6 is:

PRL6(`,m) = (−0.002082466`−5 + 0.489796`−3 + 0.0414493`−1 − 0.450229` −
0.0012495`3−0.0012495`5)m−1+(0.002082466`−5+0.006247397`−3−0.4918783`−1+
0.00374844`3 + 0.001249479`5)m+ (−0.002082466`−3 − 0.00124948`3)m3

Roughly half of closures of RL6 are negative Hopf links and the other half
trivial links, the complexity of the remaining closures expresses a greater degree
of linking complexity present in this link.

The spread of PRL6(`,m) is 13.8730 while the negative Hopf link polynomial
has spread 15.7292. The Gauss linking number of RL6 is -1.12954 compared to
-1 for the negative Hopf link.
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Figure 7: A confined pair of random walks of length 15. The Gauss linking
number is 1.0892. The average HOMFLY-PT polynomial is: (−0.130362`−5 +
0.583507`−3 + 0.576426`−1 − 0.132028` + 0.004165`3) m−1 + (0.075385`−5 +
0.284465`−3 − 0.761000`−1 + 0.0008330`) m+ (−0.075385`−3 − 0.003319`−1 −
0.000833`)m3.

Figure 8: The HOMFLY-PT polynomial spectrum of a confined pair of random
walks of length 15.
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Figure 9: A confined pair of random walks of length 20. The average HOMFLY-
PT polynomial is: (−0.007189`−5 + 0.100000`−3 − 0.633333`−1 − 0.6000000`+
0.138562`3) m−1+(0.0071895`−5+0.022222`−3−0.103922`−1−0.137908`) m+
(−0.0071895`−3 − 0.0006536`−1)m3.

Figure 10: The HOMFLY-PT polynomial spectrum of a confined pair of random
walks of length 20.
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Figure 11: A confined pair of random walks of length 25. The av-
erage HOMFLY-PT polynomial is: (−0.00249895`−5 + 0.0270721`−3 −
0.482716`−1−0.2082466`+0.3027905`3)m−1+(0.00083299`−5+0.47938359`−3+
0.9204498`−1 + 0.1724281`) m+ (−0.000832986`−3 − 0.4752187`−1)m3.

Figure 12: The HOMFLY-PT polynomial spectrum of a confined pair of random
walks of length 25.
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Figure 13: A confined pair of random walks of length 30. The av-
erage HOMFLY-PT polynomial is: (−0.00249895`−5 + 0.0270721`−3 −
0.482716`−1−0.2082466`+0.3027905`3)m−1+(0.00083299`−5+0.47938359`−3+
0.9204498`−1 + 0.1724281`) m+ (−0.000832986`−3 − 0.4752187`−1)m3.

Figure 14: The HOMFLY-PT polynomial spectrum of a confined pair of random
walks of length 30.
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Figure 15: A confined pair of random walks, RL6, of length 40. The
average HOMFLY-PT polynomial is (−0.002082466`−5 + 0.489796`−3 +
0.0414493`−1−0.450229`−0.0012495`3−0.0012495`5)m−1+(0.002082466`−5+
0.006247397`−3 − 0.4918783`−1 + 0.00374844`3 + 0.001249479`5)m +
(−0.002082466`−3 − 0.00124948`3)m3.

Figure 16: The HOMFLY-PT polynomial spectrum of a confined pair of random
walks of length 40, RL6.
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Figure 17: The absolute Gauss linking numbers as a function of length when
confined to balls of radius 4 (dot-dashed), 3 (dotted), 2 (dashed) and 1 (solid).

4.2 A study of the HOMFLY-PT polynomials of random
open confined two component links

In this section we apply the HOMFLY-PT polynomial to the study of open two
component links confined to balls of varying radii. Each edge in each chain
is of unit length, the chains have an initial point randomly selected from the
confining ball with radii 1, 2, 3, or 4 and have lengths 5, 10, 15, 20, 25, or 30.
Each case has a sample size of 10,000.

To set the stage, traditionally one might determine the absolute value of the
Gauss linking number for a pair of chains as a measure of their entanglement.
The averages of these values as a function of the radius of the ball and the length
of the chains of the samples are shown in Figure 17. We observe that the absolute
Gauss linking number depends linearly on the length of the chain in a manner
depending on the character of confinement, as expected [20]. Considering the
absolute Gauss linking number for pairs of chains of link 5, we see that the values
decrease monotonically with increasing radius of the confining ball, Figure 18.

While the Gauss linking number provides a traditional measure of link entan-
glement, the HOMFLY-PT provides a much richer assessment of entanglement
for both open and closed two component links due to its capacity for distin-
guishing topological knot and link types. To quantify the level of entanglement
we will first consider two component links of chains with lengths five and ten
confined to a ball of radius one. The first question we ask is “How large a sample
must one have in order to give a reasonable estimate of the average degree of
entanglement of a collection open polygonal chains?”

While it is possible for two equilateral triangles to be Gauss linked, we are
interested in more complex entanglement. The closure of a chain of three edges
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Figure 18: The average absolute Gauss linking numbers of pairs of chains of
length 5 confined to balls of radii 1 through 10.

will have five edges, still too few to achieve a trefoil knot as this requires at least
six edges. As a consequence, we consider the closure of a chain of five edges
which will have a total of seven edges. A chain with seven edges can be one of
only of four topological knot types: 01, ±31, and 41. To make a crude estimate
of the complexity of the task of assessing the entanglement of collections of
open polygonal chains of five edges, one first estimates the number of distinct
presentations of closures of five edge polygonal chains. To give an estimate of
the complexity of the problem, we can look at the diagrams generated by open
curves in 3-space, which can be seen as knotoids (Turaev [29, 1]). For three and
four edges, see figure 19, there are very few polygonal knotoids though more
than one expects for small numbers of crossings. This changes for five edges,
see figure 20 for 37 instances. If one adds the mirror reflections, one estimates
rough 74 polygonial knotoids with five edges. The closure to a large 2-sphere
adds two additional edges joined to the termini from a point on the 2-sphere.
This adds a potential total of 8 crossings of the five edge knotoid for a total
of 14 possible crossings and, therefore, 16384 crossing choices. This gives an
estimate of a total of 1212416 diagrams, so that 105 would be a very cautious
estimate of the number of cases.

If one uses this rough estimate of 105 presentations, without taking inter
crossings into consideraton, there are roughly the square this number for the
possible cases for two component links. Each edge of one component can over
or under cross an edge of the other component once, without taking order into
consideration, so one has an additional factor of 16384 = 27 giving a very crude
estimate of 1.6 × 1014 different presentations. Using such arguments one can
show that the number of distinct link types in each instance is finite and is
certainly quite large.

Recall that, for each pair of chains, we consider 2401 closures. We show the
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Figure 19: The polygonal knotoids of three and four edge polygons.

growth in the number of distinct HOMFLY-PT polynomials for 10k samples of
size 2401 of two component links of length five for k = 2,3,4, and 5 in Figure 21.
While the number of distinct conformations steadily increases, with an unknown
useful upper bound, a consideration of 10, 000 sample data for increasing ball
radius, Figure 22, suggests that the number of distinct links observed reflects
the degree of entanglement as it is largest for the ball of radius one and decreases
as the radius increases reflecting the expected decrease in entanglement.

The mean squared radius of gyration for this data suggests a limit of roughly
2.87, Figure 23. Considering the squared radius of gyration for length five links
as the ball radius increases, Figure 24, the monotonic increase is consistent with
decreasing density and, correspondingly, decreasing entanglement.

With regard to our putative measure of entanglement, the spread of the
HOMFLY-PT polynomial, there is visible variation in this range with an average
of 5.08, Figure 25. The monotonic decrease in spread with respect to ball
radius, Figure 26, reflects the decrease in entanglement with the relaxation of
confinement for two component links of length 5.

Consider the case of length 10, for comparison. One observes the growth
in the number of distinct HOMFLY-PT polynomials for 10k samples for k =
2,3,4, and 5 in Figure 27. Again the number of conformations steadily increases,
with an unknown upper bound. The squared radius of gyration suggests a limit
of 2.28, Figure 28. With regard to our putative measure of entanglement, the
spread of the HOMFLY-PT polynomial, there is visible variation in this range
with an average of 15.46, Figure 29.

Although these data suggest that a sample of 100,000 cases or more would
be desirable, computational time constraints requires that an analysis of 10,000
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Figure 20: The 37 polygonal knotoids of five edge polygons.
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Figure 21: The number of distinct HOMFLY-PT polynomials for length five
two component links in a ball of radius 1 for 10k samples for k = 2,3,4, and 5.

Figure 22: The number of distinct HOMFLY-PT polynomials of length five two
component links in a ball of radius k for 10, 000 samples with k = 1,2,3,4, and 5
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Figure 23: The squared radius of gyration for length five two component links
in a ball of radius 1 for 10k samples for k = 2,3,4,5, and 6.

Figure 24: The squared radius of gyration for length five two component links
in a ball of radius k for 10, 000 samples with k = 1,2,3,4,5, and 6.
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Figure 25: The HOMFLY-PT polynomial spread for length five two component
links in a ball of radius 1 for 10k samples for k = 2,3,4,5, and 6.

Figure 26: The HOMFLY-PT polynomial spread for length five two component
links in a ball of radius k for 10, 000 samples with k = 1,2,3,4, and 5
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Figure 27: The number of distinct HOMFLY-PT polynomials for length ten two
component links in a ball of radius 1 for 10k samples for k = 2,3,4, and 5

Figure 28: The squared radius of gyration for length ten two component links
in a ball of radius 1 for 10k samples for k = 2,3,4, and 5
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Figure 29: The HOMFLY-PT polynomial spread for length ten two component
links in a ball of radius 1 for 10k samples for k = 2,3,4, and 5

cases be used to illustrate the effects of confinement and length on our HOMFLY-
PT quantification of entanglement.

4.2.1 Consequences of Confinement

To give another perspective on the consequences of confinement we hold the
ball radius constant and increase the chain length. In the case of the number
of observed distinct HOMFLY-PT polynomials, Figure 30, we are constrained
to lengths 5, 10, 15, and 20 due to the computational complexity encountered
with increasing length in confinement. The growth of the number quantifies the
increasing entanglement as the length of the chains increases. A log analysis
shows the number grows as

0.00220086`6.95078

where ` is the length of the chain confined to the ball of radius 1. The monoti-
cally decreasing squared radius of gryation with increasing chain length, Figure
31, also reflects the increasing entanglement. Finally, the HOMFLY-PT spread,
Figure 32, captures the increasing entanglement.

For the ball of radius 2, one can slightly increase the length of the chains to
25 before computational complexity prevents further increase, Figures 33, 34,
and 35. A log analysis shows the number grows as

0.00591167`6.00749

where ` is the length of the chain confined to the ball of radius 1. The squared
radius of gyration and the HOMFLY-PT show the same behavior as in the case
of radius 1.
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Figure 30: The number of distinct HOMFLY-PT polynomials in a ball of radius
1 for lengths 5, 10, 15, and 20 .

Figure 31: The squared radius of gryation for two component links in a ball of
radius 1 for lengths 5, 10, 15, and 20 .

28



Figure 32: The HOMFLY-PT spread for two component links in a ball of radius
1 for lengths 5, 10, 15, and 20 .

Figure 33: The number of distinct HOMFLY-PT polynomials in a ball of radius
2 for lengths 5, 10, 15, and 20 .
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Figure 34: The squared radius of gryation for two component links in a ball of
radius 2 for lengths 5, 10, 15, and 20 .

Figure 35: The HOMFLY-PT spread for two component links in a ball of radius
1 for lengths 5, 10, 15, and 20 .
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Figure 36: The growth of distinct HOMFLY-PT polynomials is modeled by a
power law whose exponent, shown here, decreases with increasing radius of the
confining ball refecting the degree of entanglement as the radius increases.

For a ball of radius 3, the number of distinct HOMFLY-PT polynomials
grows as

0.00818644`5.71424

and, for radius 4, the number grows as

0.0124913`5.47958

Figure 36 displays the evolution of the exponent as the radius of the ball in-
creases. For longer links, the degree of entanglement, as reflected in the number
of distinct HOMFLY-PT polynomials decreases in a manner similar to that of
links of length 5, Figure 37.

The mean squared radius of gyration, Figure 38, confirms the consequences
of length versus confinement, with larger values correspoinding to, relatively,
decreased values of confinement.

The larger values of the spread of the HOMFLY-PT polynomial of the two
component link as a function of the ball radius correspond to increased entan-
glement as a function of chain length and confinement, Figure 39.

5 Discussion

With the objective of employing the HOMFLY-PT to create a quantative mea-
sure of entanglement of two open chains we have defined the average, over
indpendent spatial closures, of the HOMFLY-PT. While it is invariant over
orientation preserving Euclidean transpormations, i.e. translations and SO(3)
rotations, the open Hopf link examples in section 2, is not a diffeomorphism
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Figure 37: The number of distinct HOMFLY-PT polynomials for chains of
length 20 as function of the radius.

Figure 38: The dependence of squared radius of gyration on the length of the
chains and confining ball radius.

32



Figure 39: The dependence of the spread of the HOMFLY-PT polynomial of
the two component link on the length of the chains and confining ball radius.

Figure 40: The dependence of the spread of the HOMFLY-PT polynomial of
the two component link as a function of the chain length on the length of the
chains and confining ball radius.
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invariant. In this sense, these examples show that it is similar to the values
of the Gauss linking integral 1 [5, 20] but are more geometric than topolog-
ical in character. Although the Gauss linking number of two oriented closed
chains can be found in the HOMFLY-PT polynomial as per proposition 3.1, we
have noted that is does not carry over to the average HOMFLY-PT polynomial
that we’ve defined here. Similarly, it seems to have a character distinct from
the shape quantities defined by R ogen [24, 23]that are inspired by the Gauss
linking integral and related to Vassiliev invariants. Alas, at this point, a useful
characterization of the geometric significance of our average HOMFLY-PT has
not been identified.

The complexity of the average HOMFLY-PT, even in simple cases such as
open Hopf links, leads one to seek a single numerical measure of the quantifica-
tion. To this end we define the spread of the two variable polynomial in 3.2.3.
For one variable polynomials, e.g. the Jones polynomial [8], this would be the
radius of gyration of the system of points on the integers with the absolute val-
ues of the coefficients placed at the exponents. In this case, the spread would
analogous to the breadth of Jones polynomial and one is provoked to seek an
extension of the Kauffman-Murasugi-Thistlethwaite theorem [11, 16, 28] relat-
ing the breadth of the Jones polynomial to the number of crossings in a minimal
crossing presentation of the link: specifically, the breadth of the Jones polyno-
mial is an upper bound for the number of crossings in a minimal presentation
and is achieved only for alternating presentations. At this time there is no
known analogue for the HOMFLY-PT polynomial nore is there a version that
works for open knots due to the consequences of the averaging procedure..

6 Conclusions

We have suggested the use of the superposition of the HOMFLY-PT polynomials
of the spectrum of an open chain [14] to define a HOMFLY-PT of an open
chain in 3-space. We have described how the superposition of the HOMFLY-
PT polynomials of the random closures of an open two component link can be
employed to give a HOMFLY-PT polynomial of the open link whose spread can
be understood as a quantifying measure of the degree of entanglement present
in the open link. This measure of entanglement is characterized though its
estimation for links of length 5 through 30 under confinement to ball of varying
radus. While the classic Gauss linking measure of entanglement suggests a
linking dependence on the chain length, the spread shows a much more nuanced
dependence. The computational complexity of the HOMFLY-PT polynomial
is a constrainng factor in this study that, therefore, suggests that employing
a less sensistive such as the Alexander polynomial or Vassiliev invariants [10]
should be studied in the hope that they will, nevertheless, be able to give a
useful measure of entanglement using the superposition of closures.
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Appendix A: Open Hopf Links

HOMFLY-PT Type Number of Observations HOMFLY-PT polynomial
021 199 (−`−1 − `)m−1

221 2183 (`+ `3)m−1 − `m
−221 1 (`−3 + `)m−1 − `−1m
421 9 (−`3 − `5)m−1 + (−`− `3)m
421 5 (−`3 − `5)m−1 + (3`3 + `5)m− `3m3

521 4 (−`−1 − `)m−1 + (`−1 + 2`+ `3)m− `m3

Table 2: This data reports the links types observed for the 2401 closures of the
open Hopf Link A shown in Figure 3. The link types labelled 421 are members
of a family of four topologically distinct oriented differentiated by orientation
and mirror reflection.

HOMFLY-PT Type Number of Observations HOMFLY-PT polynomial
021 1680 (−`−1 − `)m−1

221 420 (`+ `3)m−1 − `m
−221 301 (`−3 + `)m−1 − `−1m
421 0 (−`3 − `5)m−1 + (−`− `3)m
421 0 (−`3 − `5)m−1 + (3`3 + `5)m− `3m3

521 0 (−`−1 − `)m−1 + (`−1 + 2`+ `3)m− `m3

Table 3: The data reports the links types observed for the 2401 closures for the
open Hopf Link B shown in Figure 3

HOMFLY-PT Type Number of Observations HOMFLY-PT polynomial
021 1132 (−`−1 − `)m−1

221 1055 (`+ `3)m−1 − `m
−221 189 (`−3 + `)m−1 − `−1m
421 25 (−`3 − `5)m−1 + (−`− `3)m
421 0 (−`3 − `5)m−1 + (3`3 + `5)m− `3m3

521 0 (−`−1 − `)m−1 + (`−1 + 2`+ `3)m− `m3

Table 4: The data reports the links types observed for the 2401 closures for the
open Hopf Link C shown in Figure 3
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HOMFLY-PT Type Number of Observations HOMFLY-PT polynomial
021 668 (−`−1 − `)m−1

221 1637 (`+ `3)m−1 − `m
−221 62 (`−3 + `)m−1 − `−1m
421 34 (−`3 − `5)m−1 + (−`− `3)m
421 0 (−`3 − `5)m−1 + (3`3 + `5)m− `3m3

521 0 (−`−1 − `)m−1 + (`−1 + 2`+ `3)m− `m3

Table 5: The data reports the links types observed for the 2401 closures for the
open Hopf link shown in Figure 3

HOMFLY-PT Type Number of Observations HOMFLY-PT polynomial
021 238 (−`−1 − `)m−1

221 2131 (`+ `3)m−1 − `m
−221 4 (`−3 + `)m−1 − `−1m
421 27 (−`3 − `5)m−1 + (−`− `3)m
421 1 (−`3 − `5)m−1 + (3`3 + `5)m− `3m3

521 0 (−`−1 − `)m−1 + (`−1 + 2`+ `3)m− `m3

Table 6: The data reports the links types observed for the 2401 closures for the
open Hopf link shown in Figure 3

B Two component link examples

This appendix contains the data reporting the spectrum of distinct link types
observed in the 2401 closures of some examples of open two component links at
the length of the chains varies.
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