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Abstract1

We study the 11 edge equilateral polygonal representations of the Con-2

way and Kinoshita-Terasaka knots. By removing edges of the configura-3

tions, we study the HOMFLY-PT spectrum of the open arc conformations4

using DMS closures whose superposition defines an average HOMFLY-PT5

polynomial of the open arc. Defining the spread of this polynomial gives a6

measure of the complexity of the knotting entanglement of the open arc.7

The spectrum, its superposition polynomial and the associated spread8

provide new methods to compare the Conway and Kinoshita-Terasaka9

knots and provide new information supporting the view that despite their10

similarities, the Conway knot is more entangled and more complex than11

the Kinoshita-Tereasaka knot.12

1 Introduction13

In this paper, we introduce a new application of the HOMFLY-PT polynomial14

for a polygonal representation of a knot that provides a tool with which to15

detect differences betweek the Conway and Kinoshita-Terasaka knots. More16

precisely, we will explore the HOMFLY-PT polynomial, [4], of some examples17

of open 10 edges equilateral polygonal arc presentations of the classical Conway18

[2] and Kinoshita-Terasaka [9] knots. To do so, we estimate the superposition of19

the spectrum of HOMFLP-PY polynomials taken over the closures of the open20

chains employing a uniform sampling of points on extremely large 2-spheres21

centered at the center of mass of the open chains. This method was created22

to study the knotting of open arcs modeling proteins, with the objective of23

identifying the dominant knot type (the best approximation of an open curve24

by a classical knot) [13, 15]. The superpositon of the knot spectrum does not25
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Figure 1: With a slight re-organization of a traditonal presentation one has a
ribbon presentation of the Kinoshita-Terasaka knot showing that it is smoothly
slice, Hom [6]

approximate an open curve by a knot type but, instead, aims at revealing the26

complexity of the open arc. By applying the average HOMFLY-PT polynomial27

to subchains of the Conway and Kinoshita-Terasaka knots we display underlying28

features that make their differences visible even though their HOMFLY-PT29

polynomials are the same.30

The Conway knot is an 11 crossing non-alternationg knot of genus 3, the31

mirror of K11n34 in the Thistlethwaite notation. The Kinoshita-Terasaka knot32

is an 11 crossing non-alternationg knot of genus 2, the mirror of K11n42 in the33

Thistlethwaite notation, figure 2, and a mutant of the Conway knot [10]. They34

were first shown to be distinct by Riley [20] who proved that the fundamental35

groups of their complements in the 3-sphere are different and, later, Gabai [5]36

proved they were of genus 3 and 2, respectively. More recently, Morton and37

Cromwell [16] employed polynomials of satellites to distinguish some mutants,38

including the Conway and Kinoshita-Terasaka knots. While the Kinoshita-39

Terasaka knot was known to be smoothly slice, figure 1, in 2020 Lisa Piccirillo40

proved that the Conway knot is not smoothly slice thereby resolving a 50 year41

knot theory problem [18].42

Our study is based on 11 edge equilateral polygonal models of the two knots43

provided to us by Eddy and Shonkwiler [3]. We have carefully perturbed the44

polgyons so to expand them by increasing the minimum distance between non-45

adjacent edges in each polygon, Figure 3. Open arc examples are then created by46

removing an edge of the polygonal model, or a subsegment of an edge, thereby47

creating open polygons that “display” the respective knot types.48

For a selected oriented open polygonal chain, the estimation of the super-49

position of the spectrum of HOMFLY-PT polynomials is achieved by deter-50

mining the associated HOMFLY-PT polynomial of terminal closures in direc-51

tions selected from a uniformly distributed collection of 6400 directions on the52

directional 2-sphere, [13]. This provides an approximation of the probability53

distribution of HOMFLY-PT polynomials of the closures and, thus, an estima-54

tion of the superposition by integration of the HOMFLY-PT pdf over the S2
55
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Figure 2: The Kinoshita-Terasaka knot, on the left, and the Conway knot, on
the right, are related by the indicated mutation (Wikipedia) and therefore their
HOMFLY-PT polynomials are equal: (2 ∗ `−2 + 7 + 6 ∗ `2 + 2 ∗ `4) + (−3 ∗ `−2−
11− 11 ∗ `2 − 3 ∗ `4) ∗m2 + (`−2 + 6 + 6 ∗ `2 + `4) ∗m4 + (−1− `2) ∗m6.

space of directions. One of the fundamental properties of the DMS method56

is that the proportion of knot types converges to that of the closed chain as57

the distance between the termini of the chain goes to zero. This, however, de-58

pends on the location of the gap in the chain and its size. We will explore59

this dependence for both knots. In addition, as was observed in the study of60

protein structures, the HOMFLY-PT spectrum depends on the specific geom-61

etry of the chain [15, 19, 22]. We will numerically exploit the influence of the62

location of the gap in a closed chain as well as the effect of the spatial geometry63

of the chain. In order to detect differences between the Conway knot and the64

Kinoshita-Terasaka knot, we will gather the spectra associated to the collection65

of edge gaps of the knot presentations and calculate the associated superposi-66

tions. As the superposition HOMFLY-PT polynomials are very complex and,67

thus, hard to compare, we will calculate the second moment of the polynomials,68

a strategy to quantify their spread, as a means to compare structural differences69

of the polygonal models for the knots.70

The HOMFLY-PT polynomials of a closed Conway and a Kinoshita-Terasaka71

knot are the same as they are related by mutation [10]:72

(2 ∗ `−2 + 7 + 6 ∗ `2 + 2 ∗ `4) + (−3 ∗ `−2 − 11− 11 ∗ `2 − 3 ∗ `4) ∗m2 + (`−2 +
6 + 6 ∗ `2 + `4) ∗m4 + (−1− `2) ∗m6
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Figure 3: 11 edge equilateral presentations of the closed Conway and the closed
Kinoshita-Terasaka knots

2 Spectra, superposition, HOMFLY-PT poly-73

nomials, and spread74

In this study, we are focused on polygonal repesentations of knots, specifically75

the presention of the Conway and Kinoshita-Terasaka knots as equilateral 11-76

edge polygons. Some general facts establish important features of this study.77

First, there are only a finite number of knot types that can be represented78

by polygons with a fixed number of edges. Second, every knot is, uniquely79

up to order, the connected sum of prime (irreducible) knot types [21]. In our80

case, where we remove an edge from a 10-edge polygon and form a 2-edge81

closure, every 12-edge polygonal knot is the connected sum of knots from a82

finite collection of prime knots. Let K denote the real vector space with this83

finite set of prime knot types as basis.84

One of the important tools to identify prime knot types has been the Alexan-85

der polynomial [1], a one variable integer polynomial calculated from a presen-86

tation of a configuration. If the Alexander polynomial of two configurations87

differed by more than a multiplicative unit, the configurations must represent88

different knot types. However, if the polynomials were equivalent, the relation-89

ship of the knots was not established. In the 1980’s the Jones polynomial [7]90

was discovered and was observed to have properties similar to the Alexander91

polynomial, i.e the “skein relations”, connecting the polynomials of three re-92

lated representations. Shortly thereafter, generalizations of these polynomials,93

HOMFLY-PT [4, 10] and Kauffman [8], were discovered thereby providing more94

methods to study and uncover properties of knots. They all enjoy the property95

that if they differ, the knots differ, and that they are more effective in distin-96

guishing knots. Alas they too have small families of knots that they are unable97

to distinguish. Principal among such families are the mutant knots which have98

the same polynomials, a consequence of the skein theory.99

The HOMFLY-PT polynomial, [10], PL(`,m) is a finite Laurent two variable
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Figure 4: The skein relations defining the HOMFLY-PT polynomial

polynomial satisfying the following relations:

PO(`,m) = 1

where O denotes the unknot

`PL+
(`,m) + `−1PL−(`,m) +mPL0

(`,m) = 0

100

where L+ , L−, and L0 are three oriented links that are identical except near a101

point where they are as in figure 4.102

The HOMFLY-PT polynomials of the simplest knots are found in Table 1.103

Among the elementary properties of the HOMFLY-PT polynomial is that104

the polynomial of a mirror reflection, i.e. reversing all crossings, takes ` to `−1
105

in the polynomial. Another, is that the polynomial of a connected sum of knots106

is the product of the polynomials of the constituent knots.107

2.1 The Analysis of Open Chains108

The presence of knots in open arcs has a long human history but the need for a109

mathematical basis for the study of knotting is perhaps founded on the search110

for conclusive evidence of knotting in proteins. A useful strategy to identify knot111

in open arcs was provided in 2005, the DMS method [13]. Briefly, this method112

employes the HOMFLY-PT polynomial to identify the knot type of fixed open113

polygonal arc each of whose termini are connected to a point on the “2-sphere at114

infinity.” Less poetically, parallel rays that originate at each termini are joined115

at a great distance from the open arc, figure 5. This gives a closed polygon and116

a knot type for each direction, i.e. each point on the unit 2-sphere, that is well-117

defined except for a set of measure zero corresponding to directions causing self-118

intersections of the associated polygon. The determination is a locally constant119

function to a finite collection of possible knot types. To estimate the probability120

distribution of knot types one can use a stochastic approach or sample a large121

collection of uniformly distributed points on the 2-sphere. In this way, one can122

estimate the proportion of the closures giving any specific knot type.123

One can view the DMS method as an example of a tomographic strategy124

whereby a spatial structure is to be reconstructed using a finite collection of rep-125

resentations. Here, each closure to the sphere at infinity is viewed as the analysis126

5



Figure 5: A closure of an equilatural chain, on the left, and a histogram of the
spectrum of the knot types of 6400 closures: Unknot 0.9982125, Trefoil 0.001875.

of the orthogonal projection to a plane, the over-crossing closure, [12, 14], be-127

tween the projected termini composed with the determination of the HOMFLY-128

PT polynomial the superposition of which gives the state of that projection.129

Here, the resulting HOMFLY-PT can be described as the representation of the130

reconstruction determined by the finite collection of projections giving an esti-131

mation of the probability distribution on the 2-sphere.132

2.2 The Knotting Spectrum133

A histogram of the proportion of the knot types observed from the 2-sphere134

closures gives an estimation of the 2-sphere probability distribution function of135

knot types: the knotting spectrum [13]. A histogram representing the knotting136

spectrum for a short equilateral chain is shown in figure 5.137

The knotting spectrum of a configuration has been employed to detect the138

presence of a dominant knot type which could be used to describe the topological139

type of a fixed open chain [15, 19, 22]. Although this knot type changes under140

spatial isotopy and is, therefore not a “classical topological invariant,” it does141

provide a useful tool to assess the knottedness of an open chain as a function142

of its position. For example, in [15], it was observed in a study of 1000 random143

walks, the assignment of a dominant knot type was possible in 99.6% of cases.144

However, with this dominant knot-type assignment, many open chains with very145

different conformations from each other and of possible interest in applications,146

are assigned to the same knot-type. For example, some significantly complex147

configurations may be designated as a trivial knot.148

2.3 HOMFLY-PT superposition149

The average HOMFLY-PT polynomial of an open chain is defined as the super-
position of the chain’s HOMFLY-PT polynomial spectrum or, equivalently, the
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integral of the 2-sphere probability distribution of the HOMFLY-PT polynomial
given by the function for the configuration over the 2-sphere of closure direc-
tions. The spectrum of an open chain can be thought of as a unit vector in the
knot space K whose coordinates are equal to the proportion of the directional
2-sphere whose closures give this knot type. By assigning the HOMFLY-PT to
each knot type and taking the sum, one defines a linear transformation from
the knot space K to the ring of real finite Laurent polynomials in ` and m.
This image is defined to be the average HOMFLY-PT polynomial of the open
chain giving this spectrum. In this way we attain the superposition by employ-
ing a uniformly distributed set of 6400 points on the 2-sphere, determining the
HOMFLY-PT polynomial at each of these points, and taking the weighted sum
of the polynomials, thereby giving desired estimation of the average HOMFLY-
PT polynomial of the chain. Because the chain in figure 5 is so simple, its
average HOMFLY-PT polynomial is

0.9981− 0.00375`2 − 0.00187`4 + 0.00187`2m2

150

very close to the polynomial for the unknot, P0(`,m) = 1.151

2.4 The Spread of Polynomials152

Historically, the complexity of a knot has been measured by the number of cross-
ing in a minimal crossing presentation of the knot. Here, however, we propose
to employ the HOMFLY-PT to calculate an alternative approach. Therefore we
propose a new measure of the complexity of a finite integral Laurent polynomial
such as the HOMFLY-PT,

P (`,m) =

i=k,j=n∑
i=−k,j=−n

ai,j`
imj

Each point with coordinates (i, j) of the 2k × 2n 2-dimensional integral lattice
given the value |ai,j |. In analogy with a physical system, we determine the total
mass, M , and the ‘”center of mass”, (µ`, µm) of this system:

M =

i=k,j=n∑
i=−k,j=−n

|ai,j |

(µ`, µm) =
1

M

i=k,j=n∑
i=−k,j=−n

|ai,j |(i, j)

We then define the spread of P (`,m) in analogy with squared radius of gyration
of a physical system:

sp(P (`,m)) =
1

M

i=k,j=n∑
i=−k,j=−n

|ai,j |((i− µ`)
2 + (j − µm)2)
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153

154

The spead of the HOMFLY-PT polynomial of the chain in figure 5 is 1.08431155

indicating that it is close to a constant polynomial as suggested by the coeffi-156

cients.157

158

The spread of the HOMFLY-PT polynomials of the simplest knots and their159

spreads are given in Table 1.160

161

Knot Type HOMFLY-PT polynomial Spread
01 1 0
31 (−2`2 − `4) + `2m2 1.5
41 (−`−2 − 1− `2) +m2 7.25
51 (3`4 + 2`6) + (−4`4 − `6)m2 + `4m4 10.517
52 (−`2 + `4 + `6) + (`2 − `4)m2 8.26
61 (−`−2 + `2 + `4) + (1− `2)m2 6.58
62 (2 + 2`2 + `4) + (−1− 3`2 − `4)m2 + `2m4 23.29
63 (`−2 + 3 + `2) + (−`−2 − 3− `2)m2 +m4 47.34

Table 1: The HOMFLY-PY polynomials of some simple knots and their spreads.

Having the same HOMFLY-PT polynomials, the spread of the closed Con-162

way & Kinoshita-Terasaka knots is 2058.38.163

3 HOMFLY-PT polynomials for comparable open164

Conway and Kinoshita-Terasaka knots165

Consider the open Conway and open Kinoshita-Terasaka knots, figure 6.166

We have selected these open configurations having the missing edges passing167

within the interior of the convex hull of the configurations in order to insure a168

robust spectrum in both cases. If, for example, one selects an edge lying on the169

boundary of the convex hull, a large proportion of the closures corresponding to170

directions in the complementary halfspace would instances of the knot type be-171

cause union of the edge and the closure would support a triangle move proving172

the equivalence to the knot type. In contrast, with an interior edge, the corre-173

sponding triangle would almost certainly intersect some of the complementary174

edges thereby givng another knot type. The variation in knot types would seem175

to capture the complexity of the polygonal structure. It seems possible that the176

variation in knot types, i.e. the spectra, would capture differences in spatial177

structure of these two open configurations.178

One can understand the spectrum of an open knot as a unit vector in the179

infinite Real vector space whose basis consists of the infinite set of knot types.180
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Figure 6: An open 10 edge Conway knot and an open 10 edge Kinoshita-
Terasaka knot.

Figure 7: The spectra for the Conway, blue, and K-T, red, open knots, figure 3
corresponding to the data shown in Table 2
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HOMFLY-PT Type Center Open Conway Knot Center Open Kinoshita-Terasaka Knot
01 132 161
31 20 18
61 0 4702
62 5014 22
812 0 6
821 755 0
924 16 0
926 29 0
930 0 71
932 0 510
942 0 435

C-KT (221) 39 372
31#31 42 0

31#− 62 144 0
232 17 0
238 0 52
254 189 0
255 3 0

Table 2: The knot types labelled numbers have not yet been identified. Note
the substantial difference between the distribution of knot types observed for
the 6400 closures for each open configurations shown in figure 6. The associated
spectra are shown in figure 7

In the present case, each spectrum is a finite expression in terms of this basis,181

as shown in Table 2. One defines an inner product in this space in the standard182

manner (since each vector lives in a finite dimensional subspace) and calculates183

that the inner product of the spectra for these two open polygonal knot is184

0.003574902, showing that the spectra are nearly orthogonal, a fact that is185

visible in the table 7. Althought this might suggest a significant structural186

difference between the 10 edge equalateral polygonal models of the Conway and187

Kinoshita-Terasaka knots, one must take into consideration the choice of missing188

edges in order to reach such a conclusion. We will do so in a subsequent section.189

The HOMFLY-PT superposition takes the spectrum of each polygon to to190

the associated HOMFLY-PT polynomial of the configuration, figure 6. For the191

open Conway configuration, this gives192

PConway(`,m) = (1.5877+1.2071`2+0.4528`4−0.0917`6+0.0066`8)+(−0.7837−
2.1120`2 − 0.4560`4 + 0.1049`6)m2 + (0.7837`2 − 0.1144`4)m4
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and, for the open K-T configuration, this gives193

PK−T (`,m) = (0.0123`−4−0.8577`−2−0.1737+0.589∗`2+0.7356`4)+(−0.0067`−4+
0.0478`−2 + 1.013− 0.6686`2)m2 + (0.0034`−2 − 0.0670)m4

The spread of PConway(`,m) is 12.1215 and the spead of PK−T (`,m) is194

7.3937 indicating that the open Conway knot configuration is likely more com-195

plex than the open Kinoshita-Terasaka knot configuration. Another measure196

of their difference is the spread of PConway(`,m) − PK−T (`,m); 22.2807, also197

demonstrating a substantial difference in the structures of the open configura-198

tions.199

200

4 Convergence as gap length goes to zero201

As the magnitude of a gap in an edge of a polygonal configuration goes to zero,202

we know that spectrum of the DMS probability distribution convereges to a203

constant equal to the knot type of the closed polygonal knot [11]. This implies204

that the superposition is a continuous function of the polygonal configuration,205

i.e. the HOMFLY-PY polynomial is a continuous function of the open polygon.206

As the spread of a polynomial is a continuoius function of the polynomial, the207

spread of the HOMFLY-PT of an open polygonal configuration is a continuous208

function of the configuration. In this section, we explore the evolution of the209

polynomial of the configuration and the associated spread as the length of the210

gap in an edge changes, figure 8. The data for a sample of gaps is reported211

in Table 3. We note that it is not until the size of the gap is very small that212

the HOMPLY-PT polynomial of the arc closely approaches the HOMFLY-PT213

polynomial of the closed Conway knot, figure 9 as measured by the spread. The214

HOMFLY-PT polynomials and their corresponding spread are given in Table 3.215

Gap: 1.0

P1.0(`,m) = (−0.109375`−4 − 0.28375`−2 + 1.41672 + 1.1325`2 + 0.43328`4 −
0.101563`6+0.0066`8)+(0.08438`−4+0.3614`−2−0.4620−2.0074`2−0.42078`4+
0.11469`6)m2+(−0.13296`−2−0.19156+0.707188`2−0.13234`4)m4+(0.05125+
0.0164`2 + 0.00266`4)m6 − 0.00266`2m6

The spread of P1.0(`,m) is 21.294.216

217

Gap: 0.75
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Figure 8: Open equilateral Conway knot with varying gaps:C0=1.00, C2=0.75,
C3=0.500, C4=0.375, C5=0.125, C6=0.0625
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HOMFLY-PT Type 1.0 0.75 0.5 0.375 0.20 0.125 0.091 0.0625
01 130 250 326 238 52 20 2 3
31 20 18 14 0 0 0 0 0
61 0 0 0 0 0 0 0 0
62 5014 3566 1840 814 6 2 1 1
817 0 0 0 319 183 58 37 20
821 755 1838 3075 2972 1278 853 612 417
924 16 31 48 51 8 0 0 0
926 29 27 17 5 0 0 0 0
942 0 5 9 18 0 0 0 0

C-KT (221) 39 74 154 382 2827 3999 4641 5147
31#31 42 81 69 0 0 0 0 0

31#− 62 144 169 259 295 278 205 159 127
232 17 27 0 106 142 87 57 40
254 0 0 67 136 0 0 0 104
255 190 302 459 535 38 2 0 0
256 4 12 68 137 751 611 460 354
257 0 0 0 386 162 0 0 0
258 0 0 0 0 0 0 0 0
259 0 0 0 0 0 0 0 0
268 0 0 0 0 227 273 213 150
342 0 0 0 41 315 227 181 105
343 0 0 6 12 26 29 222 1
344 0 0 4 89 108 34 15 7

Table 3: Closure data for the open Conway knots with changing gap. The knot
types labelled numbers have not yet been identified. The knot types observed
for the 6400 closures for each open configuration is shown in figure 8.

P0.75(`,m) = (−0.156874`−4 − 0.3970`−2 + 0.9392 + 0.1675`2 − 0.27375`4 −
0.24922`6+0.0127`8)+(0.12562`−4+0.5084`−2−0.15234−0.9989`2+0.28703`4+
0.2745`6)m2 + (−0.1925`−2 − 0.24594 + 0.47125`2 − 0.2991`4)m4 + (0.0711 +
0.0203`2 + 0.00422`4)m6 − 0.00422`2m8

The spread of P0.75(`,m) is 21.294.218

219

Gap: 0.5

P0.5(`,m) = (0.00125`−6 − 0.23687`−4 − 0.5936`−2 + 0.35766 − 0.9392`2 −
1.1181`4 −−0.45625`6 + 0.0108`8 + 0.0108`8) + (−0.00063`−6 + 0.187656`−4 +
0.7448`−2+0.2278+0.13016`2+1.126`4+0.47781`6)m2+(0.00125`−4−0.2845`−2−
0.32406+0.2178`2−0.49625`4)m4+(−0.0006`−2−0.2845+0.02266`2+0.0081`4)m6−
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0.0081`2m8

The spread of P0.5(`,m) is 22.308.220

221

Gap: 0.375

P0.375(`,m) = (0.16125`−6 + 0.05359`−4 − 0.52421`−2 + 0.2464 − 1.10812`2 −
1.24156`4− 0.4648`6) + (−0.0806`−6− 0.281719`−4 + 0.40781`−2 + 0.1846875 +
0.3775`2 + 1.242969`4 + 0.49828`6)m2 + (0.18047`−4 + 0.03109`−2 − 0.29437 +
0.12281`2 − 0.4989`4)m4 + (00.11265`−2 + 0.13797 + 0.00594`2)m6

The spread of P0.375(`,m) is 23.5165.222

223

Gap: 0.2

P0.125(`,m) = (0.1828`−6 + 0.24265`−4 + 0.593125`−2 + 2.9966 + 1.925`2 +
0.2514`4 − 0.49828`6) + (−0.0914`−6 − 0.56859`−4 − 1.4125`−2 + 0.18468 −
4.4051`2 − 0.70359`4 + 0.24406`6)m2 + (0.330469`−4 + 0.8664`−2 + 2.1000 +
2.5255`2 + 0.208125`4)m4 + (−0.04919`−4 − 0.3020`−2 − 0.1414 − 0.4061`2 +
0.02219`4)m6 + (0.04922`−2 − 0.03547− 0.02219`2)m8

The spread of P0.2(`,m) is 386.603.224

225

Gap: 0.125

P0.125(`,m) = (0.08156`−6 + 0.04859`−4 + 0.9328`−2 + 4.2432 + 3.2823`2 +
0.8550`4−0.16047`6)+(−0.04078`−6−0.233`−4−1.6703`−2−6.3623−6.60609`2−
1.5119`4 + 0.1605`6)m2 + (0.18796`−4 + 0.734531`−2 + 3.1484 + 3.67719`2 +
0.4964`4)m4+(−0.03547`−4−0.175469`−2−0.306718−0.597656`2+0.013594`4)m6+
(0.03547`−2 − 0.04266− 0.01359`2)m8

The spread of P0.125(`,m) is 709.882.226

227

Gap: 0.091

P0.091(`,m) = (0.06125`−6 + 0.03453`−4 + 1.2089`−2 + 4.9720 + 4.02172`2 +
1.1766`4−0.1134`6)+(−0.30624`−6−0.17719`−4−2.017`−2−7.58578−7.8006`2−
1.9325`4+0.1134`6)m2+(0.1460`−4+0.81374`−2+3.89266+4.3128`2+0.6425`4)m4+
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(−0.0282`−4 − 0.13875`−2 − 0.4809 − 0.7048`2 + 0.0089`4)m6 + (0.0283`−2 −
0.03328− 0.0089`2)m8

The spread of P0.091(`,m) is 1019.21.228

229

Gap: 0.0625

P0.0625(`,m) = (0.0350`−6 + 0.04672`−4 + 1.5519`−2 + 5.6666 + 4.6545`2 +
1.4428`4−0.7765`6)+(−0.0175`−6−0.1344`−4−2.5284`−2−8.9334−8.8961`2−
2.2595`4+0.0777`6)m2+(0.08422`−4+0.9791`−2+4.8663+4.9369`2+0.7539`4)m4+
(−0.0164`−4 − 0.0995`−2 − 0.7914 − 0.8191`2 + 0.0063`4)m6 + (0.0164`−2 −
0.0063`2)m8

The spread of P0.0625(`,m) is 1396.77.230

231

For comparison, we note that, for our closed Conway knot, one has232

PConway(`,m) = (2 ∗ `−2 + 7 + 6 ∗ `2 + 2 ∗ `4) + (−3 ∗ `−2 − 11 − 11 ∗ `2 − 3 ∗
`4) ∗m2 + (`−2 + 6 + 6 ∗ `2 + `4) ∗m4 + (−1− `2) ∗m6

The spread of PConway(`,m) is 2058.38.233

234

5 Superposition over all 11 edge gaps235

As a new strategy to measure and compare the structural complexity of these236

11-edge equilateral Conway and Kinoshita-Terasaka knot models we analyze the237

HOMFLY-PT superposition of the ensemble of all 11 edge gap configurations238

for both structures. With 6400 closures for each of the gaps, we have a collection239

of 70,400 closures for each. As a consequence, the associated spectra,, whose240

joint distributions give the average HOMFLY-PT polynomial, does not depend241

on an edge selection and, thereby, provides a robust comparison of these two242

configuration.243

For the open Conway knot, 97 different HOMFLY-PT polynomials are ob-244

served. Their superposition is245

PConway11(`,m) = (−0.0.0011`−8+0.1518`−6+0.3889`−4+0.8112`−2+2.2906+
0.9147`2+0.2025`4+0.0017`6+0.0058`8−0.0012`10)+(0.0002`−8−0.0011`−6−
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Figure 9: Spread(HOMFLY-PT) versus the gap in a selected interior edge of
the Conway polygon, figure 8

0.2669`−4−1.0300`−2−2.4790−1.9111`2−0.3651`4 +0.0779`6−0.0021`8)m2 +
(−0.0003`−6+0.0011`−4+0.3913`−2+1.5770+1.1355`2+0.0596`4+0.0008`6−
0.00001`8)m4 + (0.0012`−4 + 0.0045`−2 − 0.2768 − 0.12300`2 + 0.00001`4 −
0.0003`6)m6 + (−0.0011`−2 − 0.0010− 0.0056`2 + 0.0003`4)m8

The spread of PConway11(`,m) is 119.089 whereas the spread of the closed246

Conway and Kinoshita-Terasaka HOMFLY-PT polynomial knot is 2058.38.247

For the open Kinoshita-Terasaka knot, 86 different HOMFLY-PT polynomi-248

als are observed. Their superposition is249

PKT11(`,m) = (−0.0007386`−8 + 0.0220454`−6 − 0.264631`−4 − 0.339318`−2 +
1.330753 + 0.139105`2 − 0.364489`4 − 0.224929`6 + 0.0126989`8 − 0.00001`10) +
(−0.000369`−8−0.00821`−6+0.02598`−4+0.10460`−2−1.504616−1.16983`2+
0.39116`4+0.239886`6−0.01332`8+0.000071`10)m2+(−0.000696`−6+0.015994`−4−
0.00656`−2 + 0.887599 + 0.78575`2 − 0.16528`4 + 0.001676`6 + 0.000227`8 +
0.000028`10)m4+(0.000282`−4−0.00656`−2−0.116321−0.152287`2−0.013523`4+
0.01229`6+0.0000568`8)m6+(−0.0000426`−2−0.00004−0.000355`2+0.000128`4−
0.000028`6)m8

The spread of PKT11(`,m) is 36.9532 whereas the spread of the Conway and250

Kinoshita-Terasaka HOMFLY-PT polynomial knot is 2058.38.251

The spread of KT11 - Conway11 is 90.4808, providing a measure of the252

significance of the difference between the two HOMFLY[PT polynomials.253
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Figure 10: The spectra for the Conway11, blue, and K-T11, red, collection of
11 edge gaps illustrating the distinct charater of the knots.

From this HOMFLY-PT data, we propose that there is an important struc-254

tural difference between the 11 equilateral edge presentations of the Conway255

and Kinoshita-Terasaka knots with the Conway conformation being significantly256

more complex.257

5.1 The spectrum of Conway11 versus spectrum of Kinoshita-258

Terasaka11259

A finer comparision of the Conway and Kinoshita-Terasaka 11 equilateral260

edge polygonal models can be accomplished by comparing the spectra, figure 10,261

where one observes specific instances of differences in the observed HOMFLY-262

PT polynomials giving distinct points in the knot space. Their inner product is263

0.071 suggest the weak relationship shown in the spectra.264

From this HOMFLY-PT spectral data, we again conclude that there is an265

important structural difference between the 11 equilateral edge presentations of266

the Conway and Kinoshita-Terasaka knots.267

6 Conclusions268

The Conway knot and the Kinoshita-Terasaka knots are different since Riley’s269

study of finite group representations of the fundamental groups of knot com-270

plements [20], Gabai [5] has proved that they have different genera and, more271

recently, Morton and Cromwell [16] have used knot polynomials satallites to272
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show they are distinct. Nevertheless, having an elementary reason for their dif-273

ference is still an attractive goal in as much as they are mutants. To identify a274

structural feature that might identify some helpful structural feature, we have275

exploited our ability to highlight structural features of an open arc by applying276

the DMS method to open arcs based on 11 edge equilateral polygonal models of277

the two knots. Of course the DMS spectrum depends on the chosen edge, so we278

consider the entire collection of 11 edge gaps for each knot. Comparison of the279

spectra is complex so, inspired by [17], we have computed the DMS superposi-280

tion giving the average HOMFLY-PT polynomial of the open arc. To further281

simplify the analysis, we defined the spread of a polynomial giving a measure282

of the complexity of the superposition. Both provide measures of the indepen-283

dence of the superposition and differences in complecity. These provide a new284

perspective on the difference between the Conway and Kinoshita-Terasaka con-285

formations. Although our analysis is limited to a small number of open portions286

of the specific polygonal models, they could lead to clues as to features of the287

two knots that caputure facets that distinguish them.288

There are fundamental questions that are worthy of study. First, can one289

discern geometric features of a configuration represented in the structure of the290

superposition HOMFLY-PT polynomial of the collection of edge complements?291

Furthermore, are there facets in common for these HOMFLY-PT polynomials292

for different equilateral presentations of a given knot type? Answers to such293

questions might provide a strategy to help determine whether or not there are294

geometrically distinct equilateral polygonal conformations that are topologically295

unknotted.296

References297

[1] J. W. Alexander. Topological invariants of knots and links. Trans. Amer.298

Math. Soc., 30(2):275–306, 1928.299

[2] J. H. Conway. An enumeration of knots and links, and some of their al-300

gebraic properties. In Computational Problems in Abstract Algebra (Proc.301

Conf. Oxford, 1967), pages 329–358. Pergamon, Oxford, 1970.302

[3] T. D. Eddy and C Shonkwiler. New stick number bounds from random303

sampling of confined polygons. arXiv, pages 1–35, 2019.304

[4] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K.C. Millett, and A. Oc-305

neanu. A new polynomial invariant of knots and links. Bull. Amer. Math.306

Soc. (N.S.), 12(2):239–246, 1985.307

[5] D. Gabai. Genera of the arborescent links. Memoirs of the Amer. Math.308

Soc., 59(339):1 – 98, 1986.309

[6] J. Hom. Getting a handle on the conway knot, 2021.310

[7] V. Jones. Hecke algebra representations of braid groups and link polyno-311

mials. Ann. of Math., 126(2):335–388, 1987.312

18



[8] Louis H. Kauffman. An invariant of regular isotopy. Trans. Amer. Math.313

Soc., 318(2):417 – 471, 1990.314

[9] S. Kinoshita and H. Terasaka. On unions of knots. Osaka Math. J, 9:131315

– 153, 1959.316

[10] W. B. R. Lickorish and K. C. Millett. A polynomial invariant of oriented317

links. Topology, 26(1):107 – 141, 1987.318

[11] K. C. Millett. The length scale of 3-space knots, ephemeral knots, and319

slipknots in random walks. Prog. of Theo. Physics Sup., 191:182–191, 2011.320

[12] K. C. Millett. Knots in knots: A study of classical knot diagrams. J. Knot321

Theory Ramifications, 25(9):1641013, 10, 2016.322

[13] K. C. Millett, A. Dobay, and A. Stasiak. Linear random knots and their323

scaling behavior. Macromolecules, 38(2):601–606, 2005.324

[14] K. C. Millett and A. Rich. More knots in knots: a study of classical knot325

diagrams. J. Knot Theory Ramifications, 26(8):1750046, 18, 2017.326

[15] K. C. Millett and B. M. Sheldon. Tying down open knots: A statistical327

method of identifying open knots with applications to proteins. In Physical328

and numerical models in knot theory, volume 36 of Ser. Knots Everything,329

pages 203–217. World Sci. Publishing, Singapore, 2005.330

[16] H. R. Morton and P. R. Cromwell. Distinguishing mutants by knot poly-331

nomials. Journal of Knot Theory and its Ramifications, 5(2):225 – 238,332

1996.333

[17] E. Panagiotou and L. Kauffman. Knot polynomials of open and closed334

curves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 476:20200124,335

2020.336

[18] L. Piccirillo. The conway knot is not slice. Annals of Mathematics,337

191(2):581 – 591, 2020.338

[19] E. J. Rawdon, K. C. Millett, J. I. Sulkowska, and A. Stasiak. Knot local-339

ization in proteins. Biochem. Soc. Trans., 41(2):538–541, 2013.340

[20] R. Riley. Homomorphisms of knot groups on finite groups. Math. Comput.,341

25:603 – 617, 1971.342

[21] H. Schubert. Die eindeutige zerlegbarkeiteines knotten in primknotten.343

Akad. Wiss. Heidelberg, 3(57 - 104), 1949.344

[22] J. I. Su lkowska, E. J. Rawdon, K. C. Millett, J. N. Onuchic, and A. Stasiak.345

Conservation of complex knotting and slipknotting patterns in proteins.346

Proc. Natl. Acad. Sci. USA, 109(26):E1715–E1723, 2012.347

19


