
2022-2023 GRADUATE COURSE DESCRIPTIONS 
 
 
MATH 201 A-B-C (FWS), Harutyunyan/H. Zhou, Real Analysis 
Measure theory and integration. Point set topology. Principles of functional analysis.  Lp spaces.  The 
Riesz representation theorem. Topics in real and functional analysis.  
 
MATH 202 A-B-C (FWS), Labutin/Putinar, Complex Analysis  
Analytic functions. Complex integration. Cauchy's theorem. Series and product developments. Entire 
functions. Conformal mappings. Topics in complex analysis. 
 
MATH 206 A (F), Chandrasekaran, Matrix Analysis & Computation 
Graduate level-matrix theory with introduction to matrix computations. SVDs, pseudoinverses, 
variational characterization of eigenvalues, perturbation theory, direct and interative methods for matrix 
computations. 
 
MATH 206 B (W),  Petzold, Numerical Simulation 
Linear multistep methods and Runge-Kutta methods for ordinary differential equations: stability, order 
and convergence.  Stiffness.  Differential algebraic equations.  Numerical solution of boundary value 
problems. 
 
MATH 206 C (S), Ceniceros, Numerical Solution of Partial Differential Equations - Finite  
 Difference Methods 
Finite difference methods for hyperbolic, parabolic and elliptic PDEs, with application to problems in 
science and engineering.  Convergence, consistency, order and stability of finite difference methods.  
Dissipation and dispersion.  Finite volume methods.  Software design and adaptivity. 
 
MATH 206 D (F), Garcia-Cervera, Numerical Solution of Partial Differential Equations - Finite  
 Element Methods 
Weighted residual and finite element methods for the solution of hyperbolic, parabolic and elliptical 
partial differential equations, with application to problems in science and engineering.  Error estimates.  
Standard and discontinuous Galerkin methods. 
 
MATH 220 A-B-C (FWS), Morrison/Castella/Goodearl, Modern Algebra 
Group theory, ring and module theory, field theory, Galois theory, other topics. 
 
MATH 221 A (F), Manin, Foundations of Topology  
Metric spaces, topological spaces, continuity, Hausdorff condition, compactness, connectedness, product 
spaces, quotient spaces.  Other topics as time allows. 
 
MATH 221 B (W), Cooper, Homotopy Theory 
Homotopy groups, exact sequences, fiber spaces, covering spaces, van Kampen Theorem. 
 
MATH 221 C (S), Cooper, Differential Topology 
Topological manifolds, differentiable manifolds, transversality, tangent bundles, Borsuk-Ulam theorem, 
orientation and intersection number, Lefschetz fixed point theorem, vector fields. 
 
 

 



MATH 225 A (F), Z. Liu, Class Field Theory 

Class Field Theory is widely regarded as one of the crowning achievements of the early twentieth 
century mathematics, and its extension to the non-abelian setting underlies much of the current research 
work in algebraic number theory.  

In this course, we will first state the main theorems in global class field theory which relate (generalized) 
ideal class groups of a number field to its abelian extensions. Then we will introduce local fields and 
adeles, state the main theorems of local class field theory, and introduce the adelic formulation of class 
field theory. Then we will discuss Galois cohomology and proofs of the main theorems.  
 
 
Math 225 B (W), Y. Zhang, Topics in Analytic Number Theory 
 
 
MATH 225 C (S) – X. Zhao, O-minimal theory and applications 

Tame topology results have in the last decade found a number of important applications to algebraic and 
arithmetic geometry. The idea is to rebuild the whole mathematics in a world only allowing certain types 
of functions, like polynomials and logarithmic functions. The key ingredient is the use of o-minimality, 
a theory from mathematical logic, to pass between the geometry of an algebraic variety and that of its 
uniformizing space. This machinery is actively used recently in number theory (Shimura varieties and 
unlikely intersection), algebraic geometry (arithmetic of Hodge theory) and real analytic geometry 
(various definability questions).  

The goal of this course is to give a tour through the main applications of o-minimal theory towards 
arithmetic questions in Hodge theory. We start by introducing the basic notions of o-minimal geometry 
with a view towards the two algebraization theorems of Pila–Wilkie and Peterzil–Starchenko. We then 
show how these results are applied to prove the Ax-Schanuel conjecture and the algebraicity of Hodge 
loci.  

No prerequisite on logic or Hodge theory is required. We will review the relevant background during the 
course.  
 
 
MATH 227 A (F), Cooper, Advanced Topics in Topology 
This course will cover various topics in low dimensional topology and geometric structures on 
manifolds including some of the following: 
 
Hyperbolic geometry, Teichmuller Space, measured foliations, Thurston compactification, classification 
of  diffeomorphisms of surfaces 
 
3-Manifolds, geometrization theorem, knot theory. 
 
Projective geometry, convex projective structures, geometric transitions. 
 
Higher Teichmuller theory, Fock-Goncharov coordinates, mixed structures, a Thurston-type 
compactification. 
 
I will point out some of the many intriguing open questions in these areas. 



 
 
MATH 227 B (W), Z. Wang, Advanced Topics in Geometric and Algebraic Topology 
Mixed-state TQFTs and applications 
 
Abstract: A generalization of Atiyah type TQFTs from pure states to mixed states in the sense that the 
Hilbert space of pure states associated to a space manifold is replaced by a quantum coherent space 
related to density matrices is proposed in arxiv 2110.13946.  Atiyah type TQFT is a symmetric monoidal 
functor from the Bord category of manifolds to the category Vec of finite dimensional vector spaces, 
while in mixed-state TQFTs the target category Vec is replaced by QCS--the category of quantum 
coherent spaces, so a mixed-state TQFT is simply a symmetric monoidal functor from Bord to QCS.  
We also discuss how to construct interesting examples and their applications in topology, physics, and 
quantum computing. 
 
MATH 227 C (S), McCammond, Advanced Topics in Geometric and Algebraic Topology 
Reflections, Braids and Polynomials 
  
Abstract: In this course I will cover the basic foundations of groups generated by reflections (Coxeter 
groups) and their braided complexified cousins (Artin groups).  Towards the end of the course, I will 
discuss new research that shows how properties of classical polynomials in one complex variable can be 
used to investigate the structure of a classifying space for the braid group. 
 
MATH 232 A-B (FW), Manin/Cooper, Algebraic Topology 
Singular homology and cohomology, exact sequences, Hurewicz theorem, Poincare duality. 
 
MATH 236 A (W), H. Zimmermann, Homological Algebra  
We will start by assembling a minimal kit of concepts and results from category theory. Exactness 
problems for Hom and tensor functors will lead us to the study of projective, injective, and flat objects in 
abelian categories; these objects provide the cornerstones for subsequent homological constructions.  

Among the main aims is a clean introduction of derived functors, with Ext and Tor serving as the 
primary examples. The Ext-functor, in particular, will be considered from various angles. We will 
follow with applications, such as (homological) dimension theory. Moreover, we will supplement the 
development of derived functors with structure results for Ext- and Tor- groups which are relevant to 
applications.  

MATH 236 B (S), X. Zhao,  Homological Algebra 

In the second quarter of the course, we will introduce a categorical approach to work with complexes 
and cohomology. For an abelian category (e.g. category of modules over a ring, category of sheaves of 
abelian groups over a topological space, etc), we construct its derived category. Roughly speaking, the 
derived category consists of complexes of objects in the abelian category, and two complexes having the 
same cohomology are now considered isomorphic to each other. The general framework of triangulated 
categories and localizations will be introduced to construct such a category and to study its properties.  

The second part of the course introduces derived functor. After showing the construction, we will focus 
on derived functors most used in algebra and algebraic geometry, and use them to construct and 
compute several invariants (Hochschild and cyclic homology, higher direct image sheaves, etc). An 
introduction to spectral sequences with applications towards computing the composition of derived 
functors will be covered.  



Prerequisite: Math 220ABC and 236A, or consent of instructor. The students should have a solid 
background in module theory. We will use sheaves on topological spaces as one major example, the 
basic definitions will be covered in class.  
 
MATH 240 A-B-C (FWS), Dai/Ye/Wei, Introduction to Differential Geometry and Riemannian 
Geometry 
Topics include geometry of surfaces, manifolds, differential forms, Lie groups, Riemannian manifolds, 
Levi-Civita connection and curvature, curvature and topology, Hodge theory.  Additional topics such as 
bundles and characteristic classes, spin structures Dirac operator, comparison theorems in Riemannian 
geometry. 
 
MATH 241 A (F), Ye, Topics in Differential Geometry 
 
MATH 241 B (W), Wei, Topics in Differential Geometry 
Integral Ricci curvature lower bound is much weaker than pointwise bound. Many geometric problems 
lead to integral curvatures; for example, the isospectral problems, geometric variational problems and 
extremal metrics, and Chern-Weil’s formula for characteristic numbers. Thus, integral curvature bounds 
can be viewed as an optimal curvature assumption here. We will study the geometry and topology of 
manifolds with integral curvature bounds.  
 
MATH 241 C (S), Dai, Topics in Differential Geometry 
Laplace operator in geometry and mathematical physics 
The Laplace operator is everywhere, from the eigenvalue problems, to the curvature problems, to 
minimal surfaces, and to equations coming from mathematical physics. After introducing the 
preliminaries (the general philosophy, the Poisson equation on manifolds, elliptic operators and index 
theory perturbative theory of nonlinear equations), we will study three main examples: the Gaussian 
curvature equation on a surface, the Seiberg-Witten equation, and the Yamabe problem. The course will 
roughly follow a lecture notes by Simon Donaldson.  
 
MATH 246 A-B-C (FWS) H. Zhou/Harutyunyan, Partial Differential Equations  
Existence and stability of solutions, Floquet theory, Poincare-Bendixson theorem, invariant manifolds, 
existence and stability of periodic solutions, Bifurcation theory and normal forms, hyperbolic structure 
and chaos, Feigenbaum period-doubling cascade, Ruelle-Takens cascade. 
 
 
MATH 260 AA (W), Hu, High-dimensional Control, Games, Learning Theory and Algorithm  

Many scenarios in finance, economics, management science, and engineering can be formuated as high-
dimensional stochastic control and game problems. Stochastic control problems study the agent’s 
rational behavior with the existence of uncertainty in observations or in the noise that drives the 
evolution of the system. Stochastic differential games, as an offspring of game theory and stochastic 
control, provide the modeling and analysis of interactive agents’ conflict in the context of a dynamical 
system with uncertainty. Analytical solutions usually only exist under simple models, and one needs to 
resort to numerical algorithms beyond them. However, when the system is of high-dimension, 
conventional numerical methods soon lose their efficiency. This topic course will systematically 
introduce the theory and algorithms of deep learning and reinforcement learning to address the high-
dimensional (and infinite- dimensional) stochastic control and game problems, with discussions on the 
applications to finance and economics.  



 
MATH 260EE (FWS) Cooper, Graduate Student Colloquium 
Topics in algebra, analysis, applied mathematics, combinatorial mathematics, functional analysis, 
geometry, statistics, topology, by means of lectures and informal conferences with members of faculty. 
 
MATH 260H (S) S. Tang, High dimensional probability, approximation and statistical learning  

The course covers fundamental mathematical ideas for approximation and statistical learning problems 
in high dimensions. We will start with studying high-dimensional phenomena, through both the 
probability (concentration inequalities) and geometry (concentration phenomena). We then consider a 
variety of techniques and problems in high dimensional statistics, machine learning, and signal 
processing, ranging from dimensional reduction to classification and regression( with connections to 
approximation theory, Fourier analysis and wavelets, Reproducing kernel Hilbert spaces), to compressed 
sensing and matrix completion problems. We then consider graphs and networks, spectral graph theory, 
models of random graphs, and application to clustering. Finally we discuss problems at the intersection 
of statistical estimation, machine learning and dynamical system, in particular, the interacting particle 
system.  

Reference list:  

1. High dimensional probability: An introduction with applications in data science. R. Vershynin  

2. High dimensional statistics. P. Rigollet 
3. Ten lectures and Forty two open problems in the mathematics of data science  

4. A distribution free theory of nonparametric regression 
5. Lectures on spectral graph theory  
 
MATH 260HH (F), Atzberger, Topics in Machine Learning: Foundations and Applications  

This course covers mathematical topics relevant to machine learning to establish rigorous foundations 
and to provide guidelines for practical applications. As a rigorous basis for infer- ence, the course will 
draw on results from functional analysis, optimization, convex analysis, statistical learning theory, and 
culminate in the discussion of active current topics. For ex- ample, the approximation abilities of deep 
learning with neural networks, formulations and training of unsupervised methods such as auto- 
encoders and GANs, and non-neural network approaches such as support vector machines, kernel 
methods, and probabilistic methods. A central emphasis will be on the development of rigorous 
mathematical theory and how this can be used to guide the design of machine learning algorithms, 
perform training, and carry out analysis to evaluate performance. The beginning introductory materials 
of the course will use the books “Foundations of Machine Learning,” by M. Mohri, A. Rostamizadeh, 
and A. Talwalkar and “The Elements of Statistical Learning: Data Mining, Inference, and Pre- diction” 
by Hastie, Tibshirani, Friedman. The special topics part of the course will be based on materials 
developed by the instructor and from recent papers in the literature.  

More details concerning specific topics can be found below. Sample of Topics:  

• Introduction 
History, motivations, and recent developments. 
Statistical Learning Theory, PAC-Learnability, Bayesian Inference. Concentration Inequalities, 
High Dimensional Probability Theory. Sample Complexity Bounds , No-Free-Lunch Theorems. 
Survey of current topics in data sciences and applications.  



• Topics in Supervised Learning 
Neural networks and deep learning approaches. 
Support vector machines, kernel methods, and probabilistic approaches. Parametric and non-
parametric regression and sampling complexity. Decision trees, graphical models.  

• Topics in Unsupervised Learning 
Manifold learning. 
Neural network auto-encoders and related feature extractors. 
Generative methods, Generative Adversarial Networks (GANs), and related approaches.  

• Advanced Special Topics  

Non-linear optimization methods for machine learning, regularization, stochastic optimization.  

Theory of deep architectures (approximation theory / universality results). Reinforcement 
learning methods, stochastic approximation, and applications. Dimensionality reduction, sparse 
matrix methods. 
Emerging problems and approaches for applications in the sciences and engineering.  

Bibliography:  

1. Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar.  

2. The Elements of Statistical Learning Data Mining, Inference, and Prediction, T. Hastie, R. Tibshirani, 
J. Friedman, (2013).  

The course also uses materials developed by the instructor and papers in the literature.  
 
 
MATH 260J (S), H. Zhou, Introduction to X-ray and Radon transforms  

In inverse problems one attempts to determine the interior properties of a medium by applying various 
non-intrusive methods. In this topics course, we will introduce the mathematical analysis and practical 
inversion of the X-ray and Radon transforms, which are concerned with recovering a function or tensor 
from its integrals along straight lines or planes. It is the theoretical underpinning for several medical 
imaging methods, such as Computed Tomography (CT) and Positron Emission Tomography (PET). If 
time permits, we will also give a brief introduction to their generalizations in non-trivial geometry and 
connections to other inverse problems. There are no prerequisites, but basic knowledge of PDEs and 
Fourier analysis will be helpful for taking the course.  

References: 
Frank Natterer, The Mathematics of Computerized Tomography  
 
Math 260L, (F), Harutyunyan, Introduction to composite materials  

A composite material is a combination of two or more materials with different physical and chemical 
properties. Composites are abundant in nature. New composites are designed and created by engineers to 
do certain jobs that the materials in hand can’t do. The physical and chemical properties of a composite 
depend on the physical and chemical properties of the composing parts and the composition geometry. 
For periodic geometries the problem studying the properties of a composite is more approachable. In this 
introduction course we will present the basics of the theory of composites that study physical 



(mechanical, electrical, etc.) properties of composites materials, that are made of two materials, and that 
have simple geometric structures. Original examples such as checkerboards, spherical inclusions, 
layered materials (laminates), etc. will be presented. A basic theory of ”Homogenization” will be 
presented as well.  

 

MATH 260L, (W), Shagholian, TBA 

 
MATH 260Q, (W), Castella, Introduction to Iwasawa theory  
Iwasawa theory is the study of objects of arithmetic interest as they vary in p-adic families. It was 
originally introduced by Iwasawa in the context of class groups of cyclotomic fields, and transferred to 
the setting of elliptic curves by Mazur in the 1970s. This course will be an introduction to the basic 
methods and results of Iwasawa theory, with a special emphasis on the context of elliptic curves and its 
application to the Birch–Swinnerton-Dyer conjecture.  
 
MATH 501 (F), Garfield, Teaching Assistant Training  
Consideration of ideas about the process of learning mathematics and discussion of approaches to  
teaching. 


