
2021-2022 GRADUATE COURSE DESCRIPTIONS 
 
 
MATH 201 A-B-C (FWS), Harutyunyan/H. Zhou, Real Analysis 
Measure theory and integration. Point set topology. Principles of functional analysis.  Lp spaces.  The 
Riesz representation theorem. Topics in real and functional analysis.  
 
MATH 206 A (F), Chandrasekaran, Matrix Analysis & Computation 
Graduate level-matrix theory with introduction to matrix computations. SVDs, pseudoinverses, 
variational characterization of eigenvalues, perturbation theory, direct and interative methods for matrix 
computations. 
 
MATH 206 B (W),  Petzold, Numerical Simulation 
Linear multistep methods and Runge-Kutta methods for ordinary differential equations: stability, order 
and convergence.  Stiffness.  Differential algebraic equations.  Numerical solution of boundary value 
problems. 
 
MATH 206 C (S), Ceniceros, Numerical Solution of Partial Differential Equations - Finite  
 Difference Methods 
Finite difference methods for hyperbolic, parabolic and elliptic PDEs, with application to problems in 
science and engineering.  Convergence, consistency, order and stability of finite difference methods.  
Dissipation and dispersion.  Finite volume methods.  Software design and adaptivity. 
 
MATH 206 D (F), Garcia-Cervera, Numerical Solution of Partial Differential Equations - Finite  
 Element Methods 
Weighted residual and finite element methods for the solution of hyperbolic, parabolic and elliptical 
partial differential equations, with application to problems in science and engineering.  Error estimates.  
Standard and discontinuous Galerkin methods. 
 
MATH 220 A-B-C (FWS), Morrison/Castella/Goodearl, Modern Algebra 
Group theory, ring and module theory, field theory, Galois theory, other topics. 
 
MATH 221 A (F), Manin, Foundations of Topology  
Metric spaces, topological spaces, continuity, Hausdorff condition, compactness, connectedness, product 
spaces, quotient spaces.  Other topics as time allows. 
 
MATH 221 B (W), Cooper, Homotopy Theory 
Homotopy groups, exact sequences, fiber spaces, covering spaces, van Kampen Theorem. 
 
MATH 221 C (S), Cooper, Differential Topology 
Topological manifolds, differentiable manifolds, transversality, tangent bundles, Borsuk-Ulam theorem, 
orientation and intersection number, Lefschetz fixed point theorem, vector fields. 
 
MATH 225 A (F), Agboola, Algebraic Number Theory  
This course is intended to be a quarter-long introduction to basic algebraic number theory. It would be 
helpful (but not essential) to take this course if you are planning to take 225BC in the Winter and Spring. 
A list of topics that will be covered includes: 
 
Basic commutative algebra: Noetherian properties, integrality, rings of integers. 
 



More commutative algebra: Dedekind domains, unique factorisation of ideals, localisation. 
 
Norms, traces and discriminants. 
 
Decomposition of prime ideals in an extension field. 
 
Class numbers and units. Finiteness of the class number: Minkowski bounds. Dirichlet's unit theorem. 
Explicit calculation of units. 
 
Decomposition of prime ideals revisited: the decomposition group and the inertia group associated to a 
prime ideal. A nice proof of quadratic reciprocity. 
 
The prerequisites for this course are a solid knowledge of the basic first-year graduate courses in algebra 
and analysis, and a level of mathematical maturity appropriate for an advanced graduate course. 
 
Some references: 
 
"Algebraic Theory of Numbers", by P. Samuel (recently reprinted as a Dover paperback) 
"Algebraic Number Theory" by A. Frohlich and M. J. Taylor (CUP). 
"Algebraic Number Theory", by S. Lang (Springer). 
"Algebraic Number Theory", by J. Neukirch (Springer) 
 
Math 225 BC (WS) – Z. Liu, Introduction to Modular Forms 
Course description: A modular form is a holomorphic function on the complex upper- half plane 
invariant under the action of a congruence subgroup of SL2(Z) and satisfying a growth condition. The 
foundation for the modern theory of modular forms was created by Hecke in the 1920’s and 1930’s. 
Two major developments of the theory began to unfold around 1970. One is its applications in the study 
of the arithmetics of elliptic curves and Selmer groups of Galois representations. The other development 
was the beginning of the Langlands program seeking to establish a correspondence between Galois 
representations and automorphic representations of reductive groups.  
The purpose of this course is to explore some of the basic ideas in the theory of modular forms and their 
connection with elliptic curves and automorphic representations.  
 
Topics to be covered: This is planned as a two-quarter (winter and spring) course.  
 
Topics in the first quarter include: definition of modular forms, Eisenstein series, Hecke operators, 
modular curves, the L-function of modular forms, the Eichler– Shimura isomorphism, the Eichler–
Shimura relation, the statement of the modularity lifting theorems. 
    
Topics in the second quarter include: the adeles, Tate’s thesis, the adelization of classical modular 
forms, the Rankin–Selberg method, Whittaker models, Maass–Shimura differential operators.  
   
Prerequisites: Math 220 ABC  
   
Grading: homework 50%, take-home final exam 50% 
    
References:  
 F. Diamond and J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, 228. 
Springer-Verlag, New York, 2005.    



H. Hida, Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student 
Texts, 26. Cambridge University Press, Cambridge, 1993.    
 
MATH 227 B (W), Z. Wang, Advanced Topics in Geometric and Algebraic Topology 
Topology of configuration spaces and applications 
Abstract:  The tangent bundle of a smooth manifold is an important invariant of the manifold, but in low 
dimensional topology, tangent bundle is close to be a homotopy invariant.  Quantum topology highlights 
an old family of non-homotopy invariant of a space---the sequence of configuration spaces.  It is 
obviously not a homotopy invariant of the space as illustrated by a point and the disk.  We will cover the 
basic theory of configuration spaces, and applications from Jones polynomial to anyon physics if time 
permits. 
 
MATH 227C (S), Manin, Advanced Topics in Geometric and Algebraic Topology 
Geometry in the large 
Abstract: This course will focus on properties of metric spaces that are invariant up to quasi-isometry. 
 Informally, this means that we have to look at the space from far away, so that we can’t, for example, 
distinguish the Euclidean plane from just its integer points.  Many, but not all, of the spaces will be 
Cayley graphs of groups. In particular, we will show that there are spaces that look a heck of a lot like 
Cayley graphs, but aren't.  
 
MATH 232 A-B (WS), Long/Bigelow, Algebraic Topology 
Singular homology and cohomology, exact sequences, Hurewicz theorem, Poincare duality. 
 
MATH 231 A-B (FW), Z. Liu/Goodearl 
Differentiable manifolds, definition and examples of lie groups, lie group-lie algebra correspondence, 
nilpotent and solvable lie algebras, classification of semi-simple lie algebras over the complexes, 
representations of lie groups and lie algebras, special topics.  
 
MATH 237 A-B (FW), Morrison/X. Zhao 
Affine/projective varieties, Hilbert's Nullstellensatz, morphisms of varieties, rational maps, dimension, 
singular/nonsingular points, blowing up of varieties, tangent spaces, divisors, differentials, Riemann-
Roch theorem. Special topics may include: elliptic curves, intersection numbers, Bezout's theorem, Max 
Noether's theorem. 
 
MATH 237 C (S), H. Zimmermann, Algebraic groups and applications to representation theory 
This course will be the third quarter of the 237 sequence on algebraic geometry next year. 
 
We will develop the basics of linear algebraic groups (i.e., groups which carry a structure of affine 
algebraic variety so that the group operations are morphisms of varieties).  Then we will discuss actions 
of such groups on other (not necessarily affine) varieties. 
 
Subsequently, we will apply this theory to the understanding of representations of finite dimensional 
algebras.  One of our goals in this connection will be to prove a central theorem characterizing the 
oriented graphs that give rise to path algebras of finite representation type. 
 
 
MATH 240 A-B-C (FWS), Dai/Wei/Ye, Introduction to Differential Geometry and Riemannian 
Geometry 
Topics include geometry of surfaces, manifolds, differential forms, Lie groups, Riemannian manifolds, 
Levi-Civita connection and curvature, curvature and topology, Hodge theory.  Additional topics such as 



bundles and characteristic classes, spin structures Dirac operator, comparison theorems in Riemannian 
geometry. 
 
MATH 241 A (F), Wei, Topics in Differential Geometry 
Integral curvature bound is much weaker than pointwise bound. Many geometric problems lead to 
integral curvatures; for example, the isospectral problems, geometric variational problems and extremal 
metrics, and Chern- Weil’s formula for characteristic numbers. Thus, integral curvature bounds can be 
viewed as an optimal curvature assumption here. We will study the geometry and topology of manifolds 
with integral Ricci curvature lower bound by developing comparison theory for integral curvature, and 
manifolds with small Ln/2 bound on curvature tensor by using Ricci flow smoothing.  
 
MATH 241 B (W), Ye, Topics in Differential Geometry 
This course is an introduction to Einstein manifolds and Ricci flow.   The basic theory of Einstein 
manifolds and Ricci flow will be presented. 
 
MATH 241 C (S), Dai, Topics in Differential Geometry 
Witten Deformation and Geometry of Landau-Ginzburg Models  

Witten deformation is a deformation of the de Rham complex introduced in an extremely influential 
paper by Witten. Witten deformation on closed manifolds has found many beautiful applications, from 
the analytic proof of Morse inequalities to the development of Floer homology theory. Recent 
development in mirror symmetry, in particular the Calabi-Yau/Landau-Ginzburg correspondence has 
highlighted the importance of mathematical study of Landau-Ginzburg models. This leads us to a whole 
range of questions on the Witten deformation on non-compact manifolds. The course will introduce this 
circle of ideas surrounding Witten deformation and the geometry of Landau-Ginzburg models.  

MATH 243 A-B-C (FWS) Atzberger/Labutin/Birnir, Ordinary Differential Equations  
Existence and stability of solutions, Floquet theory, Poincare-Bendixson theorem, invariant manifolds, 
existence and stability of periodic solutions, Bifurcation theory and normal forms, hyperbolic structure 
and chaos, Feigenbaum period-doubling cascade, Ruelle-Takens cascade. 
 
MATH 260 AA (W) Garcia-Cervera, Mathematical Foundations of Electronic Structure Theory  
Description of the course: 
A complete quantum mechanical description of an electronic system requires the solution of the many-
body Schrodinger equation. The numerical approximation of this equation, however, is impractical: 
using a straightforward numerical discretization, the number of degrees of freedom grows exponentially 
with the number of electrons, and therefore only systems with very few atoms can be considered. As a 
result, a number of reduced models have appeared in the literature, and are intensely use in Physics, 
Chemistry, and Materials Science for the study and development of new materials with desirable 
properties. These problems have been the source of a significant amount 
of work in the Mathematical community.  This course is an introduction to the study of the Schr ̈odinger 
Hamiltonian, and some of reduced models used in the study of quantum systems, such as Hartree-Fock, 
Thomas-Fermi, and Kohn-Sham Density-Functional Theory. To do this, we will introduce some topics 
from operator theory and the calculus of variations. However, the course will be partly conducted as a 
research seminar, with discussions of current areas of research and open problems. 
 
Tentative list of topics: 
1. One Electron Hamiltonians: The Hydrogen Atom. 
2. Many-Body Schr ̈odinger Hamiltonian: The HVZ Theorem. 
3. Periodic Systems and the study of solids: Bloch theory. 



4. Perturbation Theory. 
5. Exponential decay of eigenfunctions: Localization. 
6. Hartree-Fock, Thomas-Fermi, and Density-Functional Theory (DFT). 
7. Beyond DFT: Green’s functions and Many-Body methods. 
 
Prerequisites: Basic knowledge of Functional Analysis and PDEs (at the level of Math 201 and Math 
243). 
 
References: Although some of the material will be extracted from published research articles, we will 
use some of the following references: 
1. Functional Analysis, by Michael Reed and Barry Simon. 
2. Analysis of Operators, by Michael Reed and Barry Simon. 
3. Quantum Mechanics, by Messiah. 
4. Peturbation Theory of Linear Operators, by Tosio Kato. 
5. Quantum Theory of Many-Particle Systems, by Alexander L. Fetter and John Dirk Walecka. 
 
MATH 260EE (FWS) Wei/Cooper, Graduate Student Colloquium 
Topics in algebra, analysis, applied mathematics, combinatorial mathematics, functional analysis, 
geometry, statistics, topology, by means of lectures and informal conferences with members of faculty. 
 
MATH 260H (W) S. Tang, Mathematical foundation of statistical and machine learning 
Description: The course covers fundamental mathematical ideas for approximation and statistical 
learning problems in high dimensions. We will start with studying high-dimensional phenomena, 
through both the probability (concentration inequalities) and geometry (concentration phenomena). We 
then consider a variety of techniques and problems in high dimensional statistics, machine learning, and 
signal processing, ranging from dimensional reduction to classification and regression( with connections 
to approximation theory, Fourier analysis and wavelets, Reproducing kernel Hilbert spaces), to 
compressed sensing and matrix completion problems. We then consider graphs and networks, spectral 
graph theory, models of random graphs, and application to clustering. Finally we discuss problems at the 
intersection of statistical estimation, machine learning and dynamical system, in particular, the 
interacting particle system. Prerequisites: Linear algebra (MATH108 ABC), real and functional analysis 
(Math124B, 201A-C), and probability and statistics (PSTAT120A), or permission of instructor.   
 
Reference list:  
High dimensional probability: An introduction with applications in data science. R. Vershynin 
High dimensional statistics. P. Rigollet  
Ten lectures and Forty two open problems in the mathematics of data science  
A distribution free theory of nonparametric regression  
Lectures on spectral graph theory 
 
MATH 260HH (F) R. Hu, Deep Learning for Stochastic Control and Games 
Stochastic control and games describe the behavior of a population of interactive agents among which 
everyone makes his/her optimal decision in a common environment. Many scenarios in finance, 
economics, management science, and engineering can be formulated as stochastic control and game 
problems. Differential games, as an offspring of game theory and optimal control, provide the modeling 
and analysis of conflict in the context of a dynamical system. Computing Nash equilibria is one of the 
core objectives in differential games, with a major bottleneck coming from the notorious curse of 
dimensionality.  
 



In this topic course, we will systematically introduce the theory and algorithms of deep learning to 
address the high-dimensional (and infinite-dimensional) stochastic control and game problems, with 
discussions on the applications to finance and economics.  
 
Tentative list of topics: 
1. Intro to neural networks, feedforward, convolutional, recurrent NN, the universal approximation 
theorem.   
2. Single agent problems: DGM method and Deep BSDE. 
3. Finite agents' stochastic games: deep fictitious play method. 
4. Control and games of mean-field type: fictitious play-based algorithm and FBSDE approach.  
5. Model-free problems via reinforcement learning.  
 
Main references are recent publications, including but not limited to:  
1. DGM: A deep learning algorithm for solving partial differential equations, by Justin Sirignano and 
Konstantinos Spiliopoulos, 
2. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations 
and backward stochastic differential equations, by Weinan E, Jiequn Han and Arnulf Jentzen,  
3. Deep optimal stopping, by S. Becker, P. Cheridito, and A. Jentzen 
4. Deep fictitious play for stochastic differential games, by Ruimeng Hu 
5. Convergence of deep fictitious play for stochastic differential games, by Jiequn Han, Ruimeng Hu, 
Jihao Long, 
6. Fictitious play for mean-field games: Continuous-time analysis and applications, by Sarah Perrin, 
Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, Olivier Pietquin 
7. Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field 
Control and Games: II - The Finite Horizon Case, by René Carmona, Mathieu Laurière 
 
 
And three books on deep learning, the theory of stochastic control, and mean-field games: 
1. Deep Learning (Adaptive Computation and Machine Learning series) by Ian Goodfellow, Yoshua 
Bengio, and Aaron Courville 
2. Continuous-time Stochastic Control and Optimization with Financial Applications, by Huyen Pham, 
3. Probabilistic Theory of Mean Field Games with Applications I & II, by René Carmona and Francois 
Delarue 
 
MATH 260J (W) Craig, Optimal Transport in PDE, Geometry, and Applied Mathematics 
Description: Over the past twenty years, optimal transport has emerged as a powerful tool in partial 
differential equations, geometry, and applied mathematics. While many of these developments are 
relatively recent, the foundational question of optimal transport is quite old, originally posed by Gaspard 
Monge in 1781: how can one rearrange a pile of dirt to look like another pile of dirt, using the least 
amount of effort? 
 
Monge’s optimal rearrangements, known as optimal transport plans, naturally induce new ways of 
interpolating between functions, shedding light on convexity properties of energy functionals arising 
throughout mathematical physics. In partial differential equations, these convexity properties have led to 
optimal estimates for stability of solutions and asymptotic behavior. In geometry, these convexity results 
culminated in a synthetic characterization of Ricci curvature, independent of a manifold’s underlying 
differential structure. In applied mathematics, these results led to a range of new numerical methods for 
simulating solutions of partial differential equations and computing related optimization problems. 
 
In this topics course, we will introduce the foundations of optimal transport and gradient flows on metric 



spaces, and we will discuss applications of these tools in partial differential equations, geometry, and 
applied mathematics. We will close by considering recent extensions of the optimal transport framework 
to discrete spaces, which has led to natural formulations of partial differential equations on graphs, 
discrete notions of Ricci curvature, and new numerical methods. 
Prerequisites: Math 201ABC 
 
References: 
[1] Gradient Flows in Metric Spaces and the Space of Probability Measures, Ambrosio, Gigli, and 
Savaré  
[2] Entropic Ricci Curvature for Discrete Spaces, Jan Maas 
[3] Topics in Optimal Transportation, Cedric Villani 
[4] Optimal Transport, Old and New, Cedric Villani 
 
MATH 260L (S), Harutyunyan, Introduction to the Calculus of Variations 
While this is an introductory course on classical Calculus of Variations, it will go quite deep in the 
subject.  We will start with classical one dimensional Calculus of Variations and proceed to the so-called 
vector problems.  Four basic convexity conditions in Calc. Var, i.e., Convexity, Rank-One Convexity, 
Quasiconvexity, and Polyconvexity will be presented and studied in quite detail. A special attention will 
be taken to the "Quasiconvexity" condition and its relation to existence of minimizers in minimization 
problems. Some applications to Partial Differential Equations and Materials Science problems will be 
discussed.  
 
MATH 260Q (S), X. Zhao, Derived Categories of Coherent Sheaves 
This course is an introduction to the study of derived categories of coherent sheaves on algebraic 
varieties. After introducing the foundation, we will focus on several concrete examples that are most 
related to current research interest. 
 
A list of potential topics includes: 
1. Basics about derived categories and derived functors. 
2. Derived categories of coherent sheaves and Fourier-Mukai transforms. 
3. Derived categories of projective spaces and exceptional collections. 
4. Derived equivalences between abelian varieties and their duals. 
5. Stability conditions on K3 surfaces. 
6. Derived equivalences between birational Calabi-Yau threefolds. 
7. Homological mirror symmetry for elliptic curves. 
 
Prerequisites: Math 237AB. 
We will be working with smooth projective varieties and coherent sheaves. People familiar with 
projective manifolds and holomorphic vector bundles should be able to follow the course. 
 
The background on triangulated categories and derived categories will be briefly recalled at the 
beginning of the course. Previously taking Math 236AB will be helpful but not required. The purpose of 
the course is partially to get an understanding of these abstract constructions via the study of concrete 
examples. 
 
Some references: 
"Fourier-Mukai transforms in algebraic geometry" by Daniel Huybrechts. 
"Stability conditions on triangulated categories" by Tom Bridgeland, Ann. Math. 166 (2007), 317–345. 
"Stability conditions on K3 surfaces" by Tom Bridgeland, Duke Math. J. 141 (2), 241-291. 
"Flops and derived categories" by Tom Bridgeland, Invent. Math. 147 (3), 613-632. 



"Categorical mirror symmetry: the elliptic curve" by Alexander Polishchuk and Eric Zaslow, Adv. Theor. 
Math. Phys. 2 (1998) 443-470. 
 
MATH 501 (F), Garfield, Teaching Assistant Training  
Consideration of ideas about the process of learning mathematics and discussion of approaches to  
teaching. 


