Hand-in Homework

Work out the following problems on your own paper and hand them in during class on Wednesday. Show all your work!

1. Let S be the surface defined by $z=x y$.
(a) Find a parameterization $r(u, v)$ for S and find the normal vector field $N=T_{u} \times T_{v}$.
(b) Find a normal vector field for S by taking the gradient of a function of three variables.
2. Let S be a surface, and let $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ be a curve on S. Say N is a normal vector field for S. What is the value of $\int_{\gamma} N \cdot d s$? Why?
3. Let S be the cylinder parameterized by $r(u, v)=(\cos u, \sin u, v), 0 \leq u \leq 2 \pi$, $0 \leq v \leq 3$. For each vector field below, determine without doing any calculations whether the flux integral $\iint_{S} F \cdot d S$ is zero or nonzero. Why?
(a) $F(x, y, z)=(x, y, 0)$
(b) $F(x, y, z)=(1,0,0)$
(c) $F(x, y, z)=(0,0, x y z)$
4. The surface of revolution S formed by rotating $f(x)=\frac{1}{x}, x \geq 1$ about the x-axis is called Gabriel's Horn.
(a) Find a parameterization for S.
(b) Show that the surface area of S is infinite (Hint: you'll set up an improper integral and have to take a limit as something approaches ∞. If you're doing a hard integral, you're doing something wrong. There's a trick.)
(c) Find the volume of S, using a double integral or math 3B tricks. Weird! This is called the "Painter's Paradox."
5. Find $\iint_{S} F \cdot d S$ where S is the part of the plane $x+2 y+8 z=8$ in the first octant and $F(x, y, z)=\left(x^{2} y,-x-y,-z^{2} x\right)$.
