## Hand-in Homework

Work out the following problems on your own paper and hand them in during class on Friday. Show all your work!

1. Consider the vector field $F=\left(3+2 x y+z^{2}, x^{2}+2 y, 2 x z\right)$
(a) Find CurlF
(b) Can you conclude that $F$ is a gradient vector field? Why or why not?
(c) Find the value of $\int_{\gamma} F \cdot d s$ where $\gamma$ is the helicoid $\gamma(t)=\left(\cos t, \sin t, \frac{1}{10 \pi} t\right)$ from $t=0$ to $t=10 \pi$.

Hint: If you're evaluating a complicated integral, you're doing something wrong.
2. Determine whether the domains of the following functions are simply connected. Why or why not?
(a) $f(x, y)=\frac{1}{x^{2}+y^{2}}$
(b) $f(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}$
(c) $F(x, y, z)=\left(x^{2}, 3 y, \frac{1}{x^{2}+y^{2}}\right)$
3. Let $F(x, y)=\left(2 e^{2 x}+4 x y, 2 x^{2}+3 y^{2}\right)$ be a vector field. It is gradient (you can verify this by checking Curl $F$ if you'd like). In this problem, you'll learn a technique for finding $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\nabla f=F$.
(a) Since we know $\frac{\partial}{\partial x} f=2 e^{2 x}+4 x y$, we can take the antiderivative with respect to $x$ to get an expression for $f(x, y)$ up to a function involving only $y$. Think: In single variable calc, we always had to include a " $+C$ ". If we integrate a function of two variables $x$ and $y$ with respect to $x$, then we have to include a " $+g(y)$ " since $y$ is taken to be a constant.

Your answer to this part should be of the form $f(x, y)=\operatorname{stuff}+g(y)$, where $g(y)$ represents an unknown function of $y$.
(b) We now have an expression $f(x, y)$ except for the $g(y)$ term. To solve for $g(y)$, first take the partial derivative with respect to $y$ of the function you found in part (a).

Your answer should be of the form $\frac{\partial}{\partial y} f(x, y)=$ stuff $+g^{\prime}(y)$.
(c) Now set the answer you got in part (b) equal to $2 x^{2}+3 y^{2}$ (why?) and solve for
$g^{\prime}(y)$.
(d) Find $g(y)$ by integrating $g^{\prime}(y)$ the old fashioned way. Plugging in to your answer in part (a), you have found an expression for $f(x, y)$ !
(e) Verify you got the correct answer by checking that $\nabla f(x, y)=F(x, y)$.

