Some Graphing Help

There are three basic tricks (that I know of) for figuring out what a given equation corresponds to:

1. Figure out what its level curves look like, i.e., set $\mathrm{z}=\mathrm{C}$ and plot the corresponding curve.
2. Graph its intersection with the $\mathrm{x}-\mathrm{z}$ plane or the $\mathrm{y}-\mathrm{z}$ plane by setting y or x equal to 0 , respectively. You can also set x or y equal to any other constant for even more information.
3. Use Mathematica or Wolfram Alpha (http://www.wolframalpha.com/)

Of course, these tricks don't cover everything. There are a lot of strange functions out there. Sometimes you just gotta be creative.
Here are some basic surfaces you should become familiar with:

1. Planes
2. Sphere of radius $r: r^{2}=x^{2}+y^{2}+z^{2}$.

3. Elliptic Parabaloid: $z=a x^{2}+b y^{2}$, where $a, b>0$.

- Level curves are circles or ellipses
- Intersection with $\mathrm{x}-\mathrm{z}$ or $\mathrm{y}-\mathrm{z}$ plane is a parabola.

4. A pair of Cones: $z^{2}=a x^{2}+b y^{2}$, where $a, b>0$

- Level curves are circles or ellipses
- Intersection with $\mathrm{x}-\mathrm{z}$ or $\mathrm{y}-\mathrm{z}$ plane is a pair of lines

5. Hyperboloid of One Sheet: $a x^{2}+b y^{2}-c z^{2}=1$, where $a, b, c>0$

- Level curves are circles or ellipses
- Intersection with $\mathrm{x}-\mathrm{z}$ or $\mathrm{y}-\mathrm{z}$ plane is a hyperbola, opening in the x or y direction respectively.

6. Hyperboloid of Two Sheets: $-a x^{2}-b y^{2}+c z^{2}=1$, where $a, b, c>0$

- Notice that if $c=1$ and $-1<z<1$, then this equation has no solution.
- Level curves are circles or ellipses
- Intersection with $\mathrm{x}-\mathrm{z}$ or $\mathrm{y}-\mathrm{z}$ plane is a hyperbola opening in the z direction.

Recall that in old-fashioned two-dimensional graphing, if we swap x and y our curve changes by a reflection about the line $y=x$. Likewise, if we swap any two of the variables x, y, and z, our surface changes by a reflection about an appropriate plane. For example, if you want a paraboloid that opens in the x -direction, just swap z and x in the equation above.

A Word About Directional Derivatives

Recall the definition of a partial derivative with respect to x at the point (a, b) :

$$
\frac{\partial f}{\partial x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

We can interpret this as the rate of change in $f(x, y)$ at (a, b) along the line $y=0$. If we want to find the rate of change along a different line, say $y=m x$, then we can take a very similar limit:

$$
\frac{\partial f}{\partial x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b+m h)-f(a, b)}{h}
$$

The directional derivative of $f(x, y)$ at (a, b) in the direction of a vector $\mathbf{u}=\left(u_{1}, u_{2}\right)$ can be thought of as the rate of change of f along the line in the direction of \mathbf{u}. This leads to the definition of the directional derivative:

$$
\frac{\partial f}{\partial x}(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+u_{1} h, b+u_{2} h\right)-f(a, b)}{h}
$$

