
Math 94 Professor: Padraic Bartlett

Lecture 5: Linear Algebra

Week 5 UCSB 2015

This is the fifth week of the Mathematics Subject Test GRE prep course; here, we review
the field of linear algebra!

1 Definitions and Concepts

Unlike the calculus we’ve been studying earlier, linear algebra is a field much more focused
on its definitions than its applications. Accordingly, most of what you’ll be asked to recall
on a test are concepts and words, rather than any specific processes! We review as many
of these concepts as we can here, though I recommend skimming through a linear algebra
textbook for a more in-depth review.

1.1 Vector Spaces: Some Important Types

• Vector space: A vector space over a field F is a set V and a pair of operations
+ : V ×V → V and · : R×V → V , that are in a certain sense “well-behaved:” i.e. the
addition operation is associative and commutative, there are additive identites and
inverses, the addition and multiplication operations distribute over each other, the
scalar multiplication is compatible with multiplication in F , and 1 is the multiplicative
identity.1

F will usually be R on the GRE.

– Examples: Rn,Cn,Qn, the collection of all polynomials with coefficients from
some field, the collection of all n× n matrices with entries from some field.

• Subspace: A subset S of a vector space V over a field F is called a subspace if it
satisfies the following two properties: (1) for any x,y ∈ S and a, b ∈ F , we have that
ax + by is also an element of S, and (2) S is nonempty.

• Span: For a set S of vectors inside of some vector space V , the span of S is the
subspace formed by taking all of the possible linear combinations of elements of S.

• Row space: For a n × k matrix M , the row space of M is the subspace of Fn

spanned by the k rows of M .

• Null space: For a n× k matrix M , the null space of M is the following subspace:

{x ∈ Fn : M · x = 0}.

– Useful Theorem: The orthogonal complement of the row space of a matrix M is
the null space of M . Conversely, the orthogonal complement of the null space of
a matrix M is the row space of M .

1See Wikipedia if you want a precise description of these properties.
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• Eigenspace: For any eigenvalue λ, we can define the eigenspace Eλ associated to
λ as the space

Eλ =: {v ∈ V : Av = λv}.

1.2 Matrices: Some Important Types

• Elementary Matrices: There are three kinds of elementary matrices, which we
draw below:

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 λ 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


,



1 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

0 . . .
... . . .

... . . . 0
0 . . . 1 . . . 0 . . . 0
...

...
...

...
...

. . .
...

0 . . . 0 0 0 . . . 1





1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 λ 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


The first matrix above multiplies a given row by λ, the second matrix switches two
given rows, and the third matrix adds λ times one row to another row.

• Reflection Matrices: For a subspace U of Rn, we can find a matrix corresponding
to the map ReflU (x) by simply looking for eigenvectors. Specfically, if {u1, . . .uk}
form a basis for U and {w1, . . .wn−k} form a basis for U⊥, note that the ui’s are
all eigenvectors with eigenvalue 1, and the wi’s are all eigenvectors with eigenvalue
-1 (because reflecting through U fixes the elements in U and flips the elements in
U⊥.) As a result, because we have n linearly independent eigenvectors, we can use
our diagonalization construction (discussed later in these notes) EDE−1 to make a
reflection matrix R.

• Adjacency Matrices: For a graph2 G on the vertex set V = {1, 2, . . . n}, we can
define the adjacency matrix for G as the following n× n matrix:

AG :=

{
aij

∣∣∣∣ aij = 1 if the edge (i, j) is in E;
aij = 0 otherwise.

}
It bears noting that we can reverse this process: given a n × n matrix AG, we can
create a graph G by setting V = {1, . . . n} and E = {(i, j) : aij 6= 0}.

– Useful Theorem: In a graph G with adjacency matrix AG, the number of paths
from i to j of length m is the (i, j)-th entry in (AG)m.

• Permutation: A permutation σ of the list (1, . . . n) is simply some way to reorder
this list into some other (σ(1), . . . σ(n)). (If you prefer to think about functions, σ is
simply a bijection from {1, . . . n} to {1, . . . n}.)

2A directed graph G = (V,E) consists of a set V , which we call the set of vertices for G and a set
E ⊂ V 2, made of ordered pairs of vertices, which we call the set of edges for G.
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Given any permutation σ of (1, . . . n), the permutation matrix Pσ is simply the
n× n matrix whose i-th column is given by eσ(i). In other words,

Pσ =


...

...
...

~eσ(1) ~eσ(2) . . . ~eσ(n)
...

...
...


1.3 Various Vector/Vector Space Properties

• Dimension: The dimension of a space V is the number of elements in a basis for
V .

• Rank: The rank of a matrix is the dimension of its row space.

• The rank-nullity theorem. The rank-nullity is the following result:

Theorem. Let U, V be a pair of finite-dimensional vector spaces, and let T : U → V
be a linear map. Then the following equation holds:

dimension(null(T )) + dimension(range(T )) = dimension(U).

• Orthogonality: Two vectors u,v are called orthogonal iff their inner product is 0;
i.e. if 〈u,v〉 = 0.

– Useful Theorem: If we have a basis B for some space V , the Gram-Schmidt
process will transform B into an orthogonal basis U for V – i.e. a basis for V
that’s made of vectors that are all orthogonal to each other. See my notes for an
in-depth description of this process.

• Linear indepdendence/dependence: A collection v1 . . . vk of vectors is called lin-
early dependent iff there are k constants a1 . . . ak, not all identically 0, such that∑k

i=1 aivi = 0. They are called linearly independent if no such collection exists.

– Useful Theorem: A collection of vectors {v1, . . .vn} is linearly dependent iff
the matrix formed by taking the vi’s as its rows has a zero row in its reduced
row-echelon form.

– Equivalently, a collection of vectors {v1, . . .vn} is linearly dependent iff the de-
terminant of the matrix formed by taking the vi’s as its rows is zero.

• Basis: A basis for a space V is a collection of vectors B, contained within V , that is
linearly independent and spans the entire space V . A basis is called orthogonal iff
all of its elements are orthogonal to each other; it is called orthonormal iff all of its
elements are orthogonal to each other and furthermore all have length 1.

• Eigenvector/eigenvalue: For a matrix A, vector x, and scalar λ, we say that λ is
an eigenvalue for A and x is a eigenvector for A if and only if Ax = λx.
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– Algebraic multiplicity: The algebraic multiplicity of an eigenvalue µ is the
number of times it shows up as a root of A’s characteristic polynomial. I.e. if
pA(λ) = (λ− π)2, π would have algebraic multiplicity 2.

– Geometric multiplicity: The geometric multiplicity of an eigenvalue µ is
the dimension of the eigenspace associated to µ.

– Useful Theorem: The algebraic multiplicity of an eigenvalue is always greater
than or equal to the geometric multiplicty of that eigenvalue.

– Useful Theorem: A matrix is diagonalizable iff every eigenvalue has its algebraic
multiplicity equal to its geometric multiplicity. (If you want it to be diagonal-
izable via real-valued matrices, you should also insist that the matrix and all of
its eigenvalues are real.)

– Dominant eigenvalue: The dominant eigenvalue: is the largest eigenvalue
of a matrix.

1.4 Various Matrix Properties

• Symmetric: A matrix is called symmetric iff AT = A.

– Useful Theorem: (AB)T = BTAT .

• Singular/Nonsingular: A n× n matrix is called singular iff it has rank < n, and
is called nonsingular iff it has rank n.

– Useful Theorem: A matrix is nonsingular if and only if it has an inverse.

– Useful Theorem: A matrix is nonsingular if and only if its determinant is nonzero.

• Orthogonal: A n × n matrix U is called orthogonal iff all of its columns are of
length 1 and orthogonal to each other. Equivalently, U is orthogonal iff UT = U−1;
i.e. UTU = UUT = I.

– Useful Theorem: Any n × n orthogonal matrix can be written as the product
of no more than n − 1 reflections. (Specifically, no more than n − 1 reflections
through spaces of dimension n− 1, which we call hyperplanes.)

• Regular: A matrix A is called regular if aij > 0, for every entry aij in A. We will
often write A > 0 to denote this.

• Nonnegative: A matrix is called nonnegative if and only if all of its entries are
≥ 0.

– Useful Theorem: Suppose that A is a nonnegative matrix and λ is the maximum
of the absolute values of A’s eigenvalues. Then λ is itself an eigenvalue, and there
is a vector of nonnegative numbers that is an eigenvector for λ.

– Perron-Frobenius: If A is a nonnegative matrix such that Am > 0 for some value
of m, then the nonnegative eigenvector above is unique, up to scalar multiplica-
tion.
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– If λ is an eigenvector of a nonnegative matrix A that corresponds to a nonnegative
eigenvector, then λ is at least the minimum of the row sums, and at most the
maximum of the row sums; similarly, λ is at least the minimum of the column
sums, and at most the maximum of the column sums.

• Similarity. Two matrices A, B are called similar if there is some matrix U such
that A = UBU−1. If we want to specify what U is, we can specifically state that A
and B are similar via U .

• Diagonalizable: A diagonalization of a matrix A is an orthogonal matrix E and
a diagonal matrix D such that A = EDE−1.

– Useful Theorem: A matrix A is diagonalizable if and only if it has n linearly in-
dependent eigenvectors e1, . . . en. In this case, if λ1, . . . λn are the corresponding
eigenvalues to the ei’s, we can actually give the explicit diagonalization of A as

 | | |
e1 e2 . . . en
| | |

 ·


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

 ·
 | | |

e1 e2 . . . en
| | |

−1

– Suppose that A is diagonalized as EDE−1. Then we can write the n-th power
of A as EDnE−1. As well, if all of the entries along the diagonal of D have k-th
roots, we can give a k-th root of A as the product ED1/kE−1.

• Positive-definite/positive-semidefinite: A matrix A is called positive-definite
iff for any nonzero vector x, we have xT · A · x > 0. Similarly, it is called positive-
semidefinite iff for any nonzero vector x, we have xT ·A · x ≥ 0.

– Useful Theorem: A matrix is positive-definite iff all of its eigenvalues are positive;
similarly, a matrix is positive-semidefinite iff all of its eigenvalues are nonnegative.

• Probability: A n × n matrix P is called a probability matrix if and only if the
following two properties are satisfied:

– P ≥ 0; in other words, pij ≥ 0 for every entry pij of P .

– The column sums of P are all 1; in other words,
∑n

i=1 pij = 1, for every j.

– Useful Theorem: Every probability matrix has a stable vector.

– Useful Theorem: If P is a probability matrix such that there is a value of m
where Pm > 0, then there is only one stable vector v for P . Furthermore, for
very large values of m, Pm’s columns all converge to v. This theorem also holds
in the case where the graph represented by P is strongly connected3, even if
Pm is never > 0.

3A graph is strongly connected iff it’s possible to get from any node to any other node via edges in
the graph.
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– Useful Theorem 3: If we have a probability matrix P representing some finite
system with n states {1, . . . n}, then the probability of starting in state j and
ending in state i in precisely m steps is the (i, j)-th entry in Pm.

• Polar decomposition: For a nonsingular n×n matrix A, a polar decomposition
of A is a pair of matrices Q, S such that Q is an orthogonal matrix and S is a
positive-definite symmetric matrix.

• Singular Value Decomposition: For a m×n matrix A, a singular value decom-
position of A is a n × n orthogonal matrix V , a m × n matrix D such that dij 6= 0
only when i = j, and a m×m orthogonal matrix U such that A = UDV T .

– Useful Theorem: If A has a singular value decomposition given by UDV T , then
A’s Moore-Penrose pseudoinverse A+ is given by the product V D+UT , where
D+ is the n×m matrix formed by taking D’s transpose and replacing all of its
nonzero entries with their reciprocals.

– Useful Theorem: If A is a n × n matrix with SVD UDV T , then the minimum
value of ||Ax||/||x|| can be found by plugging in vi, where vi is the column of V
corresponding to the smallest value dii on D’s diagonal.

• Moore-Penrose pseudoinverse: For a matrix A, we say that A+ is the pseudoin-
verse of A iff the following four properties hold: (1) AA+A = A, (2) A+AA+ = A+,
(3) AA+ is symmetric, and (4) A+A is also symmetric.

– Useful Theorem: The least-squares best-fit solutions to the system Ax = b are
given by vectors of the form

A+ · b + (I −A+A)w,

where we let w be any vector. Furthermore, if there is a solution to Ax = b,
then A+ · b is a solution of minimum length.

• The spectral theorem. Suppose that A is a n × n real symmetric matrix (i.e.
don’t make any assumptions about what U is like we did above.) Then in A’s Schur
decomposition URU−1, R is a diagonal real-valued matrix! Furthermore, we can
insure in our construction of U that it is a real-valued orthogonal matrix.

• QR-decomposition. A QR-decomposition of an n×n matrix A is an orthogonal
matrix Q and an upper-triangular4 matrix R, such that

A = QR.

Every invertible matrix has a QR-decomposition, where R is invertible.

4A matrix is called upper-triangular if all of its entries below the main diagonal are 0. For example,1 2 3
0 3 2
0 0 1

 is upper-triangular.
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• Jordan block. A block Bi of some block-diagonal matrix is called a Jordan block
if it is in the form 

λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


.

In other words, there is some value λ such that Bi is a matrix with λ on its main
diagonal, 1’s in the cells directly above this diagonal, and 0’s elsewhere.

• Jordan canonical/normal form. Suppose that A is similar to an n × n block-
diagonal matrix B in which all of its blocks are Jordan blocks; in other words, that
A = UBU−1, for some invertible U . We say that any such matrix A has been written
in Jordan canonical form.

Any n× n matrix A can be written in Jordan canonical form.

1.5 Operations on Vectors and Vector Spaces

• Dot product: For two vectors x,y ∈ Rn, we define the dot product x · y as the
sum

∑n
i=1 xiyi.

• Inner product: For two vectors x,y ∈ Rn, we define the inner product 〈x,y〉 of x
and y as their dot product, x · y.

– Useful Observation: Often, it’s quite handy to work with the transpose of certain
vectors. So, remember: when you’re taking the inner product or dot product of
two vectors, taking the transpose of either vector doesn’t change the results!
I.e. 〈x,y〉 = 〈xT ,y〉 = 〈x,yT 〉 = 〈xT ,yT 〉. We use this a *lot* in proofs and
applications where there are symmetric or orthogonal matrices running about.

• Magnitude: The magnitude of a vector x is the square root of its inner product with
itself: ||x|| =

√
〈x,x〉. This denotes the distance of this vector from the origin.

• Distance:The distance of two vectors x,y from each other is the square root of the
inner product of the difference of these two vectors: ||x− y|| =

√
〈x− y,x− y〉.

• Projection, onto a vector: For two vectors u,v, we define the projection of v onto
u as the following vector:

proju(v) :=
〈v,u〉
〈u,u〉

· u.

• Projection, onto a space: Suppose that U is a subspace with orthogonal basis
{b1, . . . bn}, and x is some vector. Then, we can define the orthogonal projection
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of x onto U as the following vector in U :

projU (x) =
n∑
i=1

projbi
(x).

– Useful Theorem: This vector is the closest vector in U to x.

• Orthogonal complement: For a subspace S of a vector space V , we define the
orthogonal complement S⊥ as the following set:

S⊥ = {v ∈ V : 〈v, s〉 = 0,∀s ∈ S} .

• Isometry: A isometry is a map f : Rn → Rn that preserves distances: i.e. for any
x,y ∈ Rn, we have

||x− y|| = ||f(x)− f(y)||

• Reflection: For a subspace U of Rn, we define the reflection map through U as
the function

ReflU (x) = x− 2 · projU⊥(x)

1.6 Operations on Matrices

• Transpose: For a m× n matrix A, the transpose AT is the n×m matrix defined by
setting its (i, j)-th cell as aji, for every cell (i, j).

• Determinant For a n× n matrix A, we define

det(A) =

n∑
i=1

(−1)i−1a1i · det(A1i).

– Properties of the Determinant:

∗ Multiplying one of the rows of a matrix by some constant λ multiplies that
matrix’s determinant by λ; switching two rows in a matrix multiplies the
that matrix’s determinant by −1; adding a multiple of one row to another
in a matrix does not change its determinant.

∗ det(AT ) = det(A).

∗ det(AB) = det(A) det(B).

∗ The determinant of the matrix A is the volume of the parallelepiped spanned
by the columns of A (up to a factor of ±1, which is how we determine if the
map is orientation-preserving or -reversing.)

– Useful Theorem: The determinant of a matrix A is nonzero if and only if A is
invertible.

• Trace: The trace of a n× n matrix A is the sum of the entries on A’s diagonal.

– Useful Theorem: The trace of a matrix is equal to the sum of its eigenvalues.

• Characteristic polynomial: The characteristic polynomial of a matrix A is the
polynomial pA(λ) = det(λI −A), where λ is the variable.

– x is a root of pA(λ) iff x is an eigenvalue for A.
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2 Example problems

We work some sample problems here, to illustrate some of the ideas.

Question. Suppose that A is an n × n matrix such that A3 is the all-zeroes matrix, i.e.
the n× n matrix in which every entry is 0.

1. Think of A as a linear map from Rn → Rn. Can the range of A be equal to Rn?

2. Can you find an example of such a matrix A, such that A and A2 are not themselves
all-zeroes matrices?

Proof. For an example of such a matrix, consider

A =

0 1 0
0 0 1
0 0 0

 .
We can easily check that

A2 =

0 1 0
0 0 1
0 0 0

 ·
0 1 0

0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0

 ,
A3 = A2 ·A =

0 0 1
0 0 0
0 0 0

 ·
0 1 0

0 0 1
0 0 0

 =

0 0 0
0 0 0
0 0 0

 .
If you want a n×n example of such a matrix, simply add additional rows/columns of zeroes
to the left and bottom of A.

In general, we claim that the range of any such matrix A cannot be Rn. To see why,
simply notice that if A is a matrix with range equal to its domain, then A must be invertible;
consequently, for any natural number k, Ak must also be invertible, with inverse given by
(A−1)k. Therefore Ak would have range Rn (as it is invertible, and thus has dim(nullspace)
= 0;) and therefore in particular we could not have Ak = the all-zeroes matrix for any k,
as this has dim(nullspace) = n.

Question. Take any n× n matrix M .

1. Take any k > 0 ∈ N, and think of M,Mk as a pair of linear maps from Rn → Rn.
Prove that

nullspc(Mk) ⊇ nullspc(M).

2. Suppose that det(M) = 0. Prove that det(Mk) = 0 as well.

Proof. The first claim here is not hard to establish. Take any vector ~v ∈ nullspc(M). By
definition, we know that M~v = ~0; therefore, we can conclude that Mk~v = Mk−1 ·M~v =
Mk−1~0 = ~0 as well, and thus that ~v ∈ nullspc(M).
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As a side note, our earlier problem proves that inequality is possible (as the nullspaces
of A,A3 were distinct;) it is also not hard to see that equality is possible (let M be the
all-zeroes matrix!) and thus that this is the strongest statement we can make.

For the second part of our claim: we could simply use the multiplicative property of the
determinant (which tells us that det(Mk) = det(M) · . . . · det(M) = 0 · . . . · 0 = 0), or we
could use the first part of this question to note that because

• det(M) = 0 if and only if dim(nullspc(M)) 6= 0, and

• nullspc(Mk) ⊇ nullspc(M), then dim(nullspc(M)) ≤ dim(nullspc(Mk)),

• then we can conclude that if det(M) = 0 then dim(nullspc(Mk)) 6= 0, and thus that

• det(Mk) = 0.

Question. Create a 4× 4 matrix A with the following properties:

• No entry of A is 0.

• A has 1,2,and 3 as eigenvalues.

Proof. If we ignore our “no zero entries” condition, this is not too hard; the matrix1 0 0
0 2 0
0 0 3


satisfies our eigenvalue properties, as (1, 0, 0), (0, 1, 0), (0, 0, 1) are eigenvectors for these
three eigenvalues 1, 2, 3

Now, we can use the fact that eigenvalues are invariant under similarity; that is, if A
is a matrix and B is an invertible matrix, then A and BAB−1 have the same eigenvalues!
(This is because if ~v is an eigenvector for A, then B~v is an eigenvalue for BAB−1, with the
same eigenvalue.)

So we can try simply multiplying A on the left and right by appropriate B,B−1’s, and
hope we get something without zeroes! In particular, let’s use some matrices whose inverses
we know: elementary matrices! Recall that

B =

1 1 0
0 1 0
0 0 1

⇒ B−1 =

1 1 0
0 1 0
0 0 1

 ,
because the first map (when processed as B · (matrix)) corresponds to the Gaussian elim-
ination move of “add one copy of row two to row three,” and the second is just “add −1
copies of row two to row three.”

Therefore 1 1 0
0 1 0
0 0 1

 ·
1 0 0

0 2 0
0 0 3

 ·
1 −1 0

0 1 0
0 0 1

 =

1 1 0
0 2 0
0 0 3

 ;
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by using more of these elementary matrices, we can actually get1 0 1
0 1 0
0 0 1

 ·
1 1 0

0 2 0
0 0 3

 ·
1 0 −1

0 1 0
0 0 1

 =

1 1 2
0 2 0
0 0 3

 ;

1 0 0
2 1 0
0 0 1

 ·
1 1 2

0 2 0
0 0 3

 ·
 1 0 0
−2 1 0
0 0 1

 =

−1 1 2
−6 4 4
0 0 3

 ;

 1 0 0
0 1 0
−1 0 1

 ·
−1 1 2
−6 4 4
0 0 3

 ·
1 0 0

0 1 0
1 0 1

 =

 1 1 2
−2 4 4
2 −1 1

 .

This is a matrix that has no nonzero entries, and by construction is similar to

1 0 0
0 2 0
0 0 3

;

so we’ve answered our problem!

Question. Suppose that A is a n× n matrix with the following two properties:

• An is the all-zeroes matrix.

• There is exactly one nonzero vector ~v, up to scalar multiples, that is an eigenvector
of A. (In other words, the only eigenvectors for A are vectors of the form c · ~v.)

Find the Jordan normal form of A.

Proof. Take any eigenvector ~v for A; then A~v = λ~v. Consequently, An~v = An−1λ~v =
An−2λ2~v = . . . = λn~v. Because An is the all-zeroes matrix, we can also observe that
An~v = ~0, for any vector ~v; consequently, we have proven that the only possible eigenvalue
for A is 0.

Our second bullet point is the claim that the dimension of the eigenspace for this only
eigenvalue is 1. Consequently, if we look at our matrix’s Jordan normal form, we know that

• The diagonals are all zeroes, as 0 is the only eigenvalue, and eigenvalues go on the
diagonal of a Jordan normal form.

• There is only one block, as there is only one dimension of eigenvectors.

Therefore, we have that the Jordan normal form here is just zeroes on the diagonal, ones
directly about the diagonal, and zeroes elsewhere: i.e.

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . 0
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Question. Suppose that A is a real-valued symmetric n×n matrix with the following two
properties:

• All of A’s entries are either 0 or 1.

• The all-1’s vector is an eigenvector of A, with eigenvalue 10.

1. How many 1’s are there in each row of A?

2. Suppose that λ 6= 10 is another eigenvalue of A. Prove that λ ≤ 10.

Proof. Let A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 . Notice that by simply multiplying it out, A · (1, 1, . . . 1)

is the vector (
n∑
i=1

a1i,
n∑
i=1

a2i, . . .
n∑
i=1

ani

)
.

If this is equal to (10, 10, . . . 10), then there are ten 1’s in each row of A, as claimed.
Furthermore, suppose that we have any eigenvalue λ other than 10 for this matrix A. Let

~v be the eigenvector for this eigenvalue, and vk be the largest component of this eigenvector.
Then, again by definition, we havea11 . . . a1n

...
. . .

...
an1 . . . ann

 ·
v1...
vn

 =


∑n

i=1 a1ivi
...∑n

i=1 anivi

 = λ

v1...
vn

 .
In particular, if we look at the vk coördinate, we have

n∑
i=1

akivi = λvk;

but if we use the fact that vk is the “biggest” (i.e. vk ≥ vj , ∀j), we can see that

n∑
i=1

akivi ≤
n∑
i=1

akivk ≤ 10vk,

because there are at most ten one-entries in the k-th row (and the rest are zeroes.)
But this means that λvk ≤ 10vk; i.e. λ ≤ 10, as claimed.
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