
Math 94 Professor: Padraic Bartlett

Lecture 4: Integrals in Rn

Week 4 UCSB 2015

This is the third week of the Mathematics Subject Test GRE prep course; here, we
review the concepts of integrals in higher dimensions!

1 Definitions and Concepts

We start by reviewing the definitions/theorems we have for the integrals of functions on
Rn:

1. Types of integrals. You’ve (in theory) learned how to take several kinds of integrals
in undergrad:

• “Normal” integrals. Given a region R ⊂ Rn, we know how to take the integral
of any function F : Rn → Rm over such a region by taking iterated integrals.
For example, if R is some sort of a n-dimensional box [a1, b1] × . . . [an, bn], we
can write

∫∫
R

FdV as the iterated integral

∫ b1

a1

. . .

∫ bn

an

Fdxn . . . dx1.

Part of being able to do these integrals is the ability to describe a region R via
sets of nested parameters. For example, if R is the upper-right quadrant of the
unit disk

R = {(x, y) : x2 + y2 ≤ 1, 0 ≤ x, 0 ≤ y},

you should be able to describe R as the set of all points such that

x ∈ [0, 1], y ∈ [0,
√

1− x2],

and therefore notice that that we can express∫∫
R

f(x, y)dydx =

∫ 1

0

∫ √1−x2
0

f(x, y)dydx,

for some function f . Be able to do this “nested parameter” thing over most kinds
of regions: usually, the way you do this is by picking one variable, determining its
maximum range, then (for some fixed value of that first variable) pick a second
variable and determine its maximum range depending on the first variable, and
so on/so forth.
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• Line integrals. Given a parametrized curve γ : [a, b] → Rn, we can find the
integral of either a vector field F : Rn → Rn or a scalar field f : Rn → R along
this curve. Specifically, we can express these integrals as the following:∫

γ
F · dγ =

∫ b

a
(F ◦ γ(t)) · (γ′(t))dt, and∫

γ
f dγ =

∫ b

a
(f ◦ γ(t))||γ′(t)||dt.

• Surface integrals. Given a parametrized surface S with parametrization T :
R→ S, R ⊆ R2, we can find the integral of any function f : Rn → R over S, as
well as the integral of any vector field F : Rn → Rn over S. Specifically, we can
express the integral of f over S as the following two-dimensional integral over R:∫∫

S

fdS =

∫∫
R

(f ◦ T (u, v)) · ||Tu × Tv|| dudv.

As well, recall that a unit normal vector to our surface, n, can be given by the
formula

n =
(Tu × Tv)
||Tu × Tv||

or
(Tv × Tu)

||Tv × Tu||

up to the orientation of n: i.e. depending on whether we look at (Tu × Tv) or
(Tv × Tu), we will get either n or −n. Choosing an orientation for our surface S
is simply choosing which of these two choices of normal vectors we will make for
our entire integral: whenever we ask you to integrate a vector field over a surface,
we will tell you what orientation you should pick (i.e. by asking you to orient S
so that “the normals point away from the origin,” or something like that.) Once
you’ve fixed an orientation, say the Tu× Tv one, we define the integral of F over
S as the following integral:∫∫

S

F · dS =

∫∫
S

F · ndS =

∫∫
R

(f ◦ T (u, v)) · (Tu × Tv)
||Tu × Tv||

· ||Tu × Tv|| dudv

=

∫∫
R

(f ◦ T (u, v)) · (Tu × Tv) dudv.

The trickiest thing going on here is “how” you choose your parametrization. For
finding a parametrization of a surface S, you can usually do one of the following
two things:

2



– Often, if you describe your surface S in cylindrical or spherical coördinates,
you’ll see that one of the coördinates you’re describing your surface in is con-
stant. For example, a spherical shell of radius 3 can be described in spherical
coördinates as the set of all point (3, θ, φ), where θ ∈ [0, 2π], φ ∈ [0, π]. In
this kind of situation, our parametrization is just using this coördinate sys-
tem with the constant variable treated as a constant: i.e. for the spherical
shell of radius 3, our parametrization is just

T (θ, φ) = (3 cos(θ) sin(φ), 3 sin(θ) sin(φ), 3 cos(φ)),

where θ ∈ [0, 2π], φ ∈ [0, π].

– If this doesn’t work out, the other tactic that’s often useful is finding an
equation that describes your surface, and solving for one of the variables in
terms of the others. For example, suppose that we’re looking at the surface
S given by the upper sheet of the hyperboloid of two sheets between heights
1 and 2: i.e.

S = {(x, y, z) : −x2 − y2 + z2 = 1, z ∈ [1, 2]}.

In this case, because z is positive, we can solve for z in terms of the other
variables, and express S as

S = {(x, y, z) : z =
√

1 + x2 + y2, z ∈ [1, 2]}.

We can then use this to formulate a parametrization of S: simply let x and
y range over the possible values that keep z between 1 and 2, and then set
z =

√
1 + x2 + y2:

T (x, y) = (x, y,
√

1 + x2 + y2), x ∈ [−
√

3,
√

3], y ∈ [−
√

3− x2,
√

3− x2].

You can of course combine these two approaches: for example, if we were
to use cylindrical coördinates on our surface S above and replace x with
r cos(θ), y with r sin(θ), we can see that we can easily express T instead as
the map

T (r, θ) = (r cos(θ), r sin(θ),
√

1 + r2), r ∈ [0,
√

3], θ ∈ [0, 2π],

which may be easier to work with.

2. Tools for evaluating integrals. Throughout your undergraduate career, you’ve
ran into many integrals of the above kinds that were difficult or impossible to directly
evaluate. Motivated by these problems, we developed a number of theorems and tools
about integration, which we repeat here:

• Green’s theorem. There are a number of forms of Green’s theorem; we state
the simpler and most commonly used version here. Suppose that R is a region
in R2 with boundary ∂R given by the simple closed curve C, and suppose that γ
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is a traversal of C in the counterclockwise direction. Suppose as well that P and
Q are a pair of C1 functions from R2 to R. Then, we have the following equality:∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
γ

(Pdx+Qdy) .

• Stokes’ theorem. Stokes’ theorem, quite literally, is Green’s theorem for sur-
faces in R3 (as opposed to restricting them to lying in the plane R2.) Specifically,
it is the following claim: suppose that S is a surface in R3 with boundary ∂S
given by the simple closed curve C, suppose that n is a unit normal vector to S
that gives S some sort of orientation, and suppose that γ is a traversal of C such
that the interior of S always lies on the left of γ’s forward direction, assuming
that we’re viewing the surface such that the normal vector n is pointing towards
us. Suppose as well that F is a vector field from R3 to R3. Then, we have the
following equality: ∫∫

S

(∇× F ) · n dS =

∫
γ
Fdγ.

In general, you use Green’s and Stokes’s theorems whenever you have a integral
of a function over an awful curve (and taking derivatives to work with your
function over a region, which is what the curl does, will make things easier), or
you have an integral of a curl-like function over an awful region (and working on
the curve would make things easier.)

• Divergence/Gauss’s theorem. Let W be a region in R3 with boundary given
by some surface S, let n be the outward-pointing (i.e. away from W ) unit normal
vector to S, and let F be a smooth vector field defined on W . Then∫∫∫

W

(div(F ))dV =

∫∫
∂W

(F · n)dS.

Again, use this like you would use Green’s and Stokes’s theorems.

• Change of variables. A common tactic to make integrals easier is to apply
the technique of change of variables, which allows us to describe regions in Rn
using coördinate systems other than the standard Euclidean ones. In general,
the change-of-variables theorem says the following:

– Suppose that R is an open region in Rn, g is a C1 map Rn → Rn on an
open neighborhood of R, and that f is a continuous function on an open
neighborhood of the region g(R). Then, we have∫

g(R)
f(x)dV =

∫
R
f(g(x)) · det(D(g(x)))dV.

Specifically, the three most common change-of-variable choices are transitions
to the polar, cylindrical, and spherical coördinate systems, which we review
here:
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– Polar coördinates. Suppose that R is a region in R2 described in polar
coördinates: i.e. there is some set A ⊆ [0,∞)× [0, 2π) such that γ(A) = R,
where γ is the polar coördinates map (r, θ) 7→ (r cos(θ), r sin(θ)). Then, for
any integrable function f : R2 → R, we have∫∫∫

γ(A)

f(x, y)dV =

∫∫∫
A

f(r cos(θ), r sin(θ)) · r dV.

– Cylindrical coördinates. Suppose that R is a region in R3 described in
cylindrical coördinates: i.e. there is some set A ⊆ [0,∞)× [0, 2π)× (−∞,∞)
such that γ(A) = R, where γ is the cylindrical coördinates map (r, θ, z) 7→
(r cos(θ), r sin(θ), z). Then, for any integrable function f : R3 → R, we have∫∫∫

γ(A)

f(x, y)dV =

∫∫∫
A

f(r cos(θ), r sin(θ), z) · r dV.

– Spherical coördinates. Suppose that R is a region in R3 described in
spherical coördinates: i.e. there is some set A ⊆ [0,∞) × [0, 2π) × [0, π)
such that γ(A) = R, where γ is the spherical coördinates map (r, θ, ϕ) 7→
(r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)). Then, for any integrable function
f : R3 → R, we have∫∫∫
γ(A)

f(x, y)dV =

∫∫∫
A

f(r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)) · r2 sin(ϕ) dV.

One of the trickiest things to do with change of variables is deciding which
coördinate system to use on a given set. For example, consider the following five
shapes:

cyl sphcyl cyl sph

To describe the cone, sphere cap, or torus above, cylindrical coördinates are
probably going to lead to the easiest calculations. Why is this? Well, all three of
these shapes have a large degree of symmetry around their z-axis; therefore, we’d
expect it to be relatively easy to describe these shapes as a collection of points
(r, θ, z). However, these shapes do *not* have a large degree of rotational symme-
try: in other words, if we were to attempt to describe them with the coördinate
(r, θ, ϕ), we really wouldn’t know where to begin with the ϕ coördinate.

However, for the ellipsoid and “ice-cream-cone” section of the ellipsoid, spherical
coördinates are much more natural: in these cases, it’s fairly easy to describe
these sets as collections of points of the form (r, θ, ϕ).
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In general, if you’re uncertain which of the two to try, simply pick one and see
how the integral goes! If you chose wisely, it should work out; otherwise, you can
always just go back and try the other coördinate system.

3. Applications of the integral. Finally, it bears noting that we’ve developed a few
applications of the integral to finding volume, surface area, length, and centers of
mass. We review these here:

• Volume, surface area, and length. If you have a solid V , a surface S, or a
curve C, you can find the volume/area/length of your object by integrating the
function 1 over that object.

• Area, via Green’s theorem. If you have a region R ⊂ R2 with boundary
given by the counterclockwise-oriented curve γ, you can use Green’s theorem to
find its area as a line integral. Specifically, notice that if F (x, y) =

(
−y

2 ,
x
2

)
, we

have ∂F2
∂x −

∂F1
∂y = 1, and therefore that Green’s theorem says that∫∫

R

1 dA =

∫
γ

(
−y

2
,
x

2

)
dγ.

• Center of mass. Suppose that an object A (a curve, surface, or solid) has
density function δ(x). Then, the xi-coördinate of its center of mass is given by
the ratio ∫

A

xiδ(x) dA∫
A

δ(x) dA
.

To illustrate these concepts, we work some examples:

2 Example Problems

Question 1. Let S denote the cut-off paraboloid surface formed by the equations z + 1 =
x2 + y2, z ≤ 0, oriented so that the z-component at the origin is positive. Let F denote the

vector field F (x, y, z) =
(
ezy, ez

2
x, ez

3
z
)

. Find the integral of ∇× F over S.

Solution. First, we calculate ∇× F :

∇× F =

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
=
(

0− 2ez
2
xz, ezy − 0, ez

2 − ez
)
.

You could parametrize S and directly integrate this vector over S. But this looks awful.
Instead, what we can do is use Stokes’ theorem! In particular, consider the surface D given
by the unit disk x2 + y2 ≤ 1, z = 0. This surface has the same boundary as our surface
S: specifically, ∂S = ∂D = x2 + y2 = 1. Suppose we orient the unit disk with the normal
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(0, 0, 1), which is normal to the unit disk everywhere. Then these boundaries have the same
orientation, if both boundaries are oriented positively with respect to their corresponding
surfaces.

Therefore, we can use Stokes’s theorem once to see that∫∫
S

∇× F · dS =

∫
∂S+

F · ds,

and we can use it again to see that∫
∂D+

F · ds =

∫∫
D

∇× F · dS.

Because ∂S = ∂D, these integrals are all the same! So, to calculate
∫∫
S

∇× F · dS, we can

calculate
∫∫
D

∇×F · dS. We do this here. Notice that the unit normal n to the unit disk as

a surface in R3 is simply (0, 0, 1); this saves us the effort of having to parametrize the disk,
because∫∫
D

∇× F · dS =

∫∫
D

(
0− 2ez

2
xz, ezy − 0, ez

2 − ez
) ∣∣∣

any parametrization of the disk
· (0, 0, 1) dS = 0,

as any parametrization of the disk will have zero z-coördinate, and thus our integral is of
the form (−,−, 0) · (0, 0, 1) = 0!

Lots of set-up, but it makes our calculations trivial: we didn’t even have to parametrize
the unit disk! This is one of the cooler applications of Stokes’s theorem: switching between
different surfaces.

You can also use things like Stokes’s and Green’s theorem to switch integrals between
different curves: it’s a little weirder, but sometimes is really useful.

Question 2. Take a pond whose outer perimeter is given by a circle of radius 4 and contains
16π cubic centimeters of water. Drop a rock in the center of the pond. Assume that the
rock’s edges are roughly vertical, i.e. we can model the boundary of the rock in the pond as
some 2-d shape. After doing this, assume the water has height h in centimeters.

Suppose that there is an ant walking around the boundary of the rock. Suppose further
that this ant is being blown on by a wind current, which imparts force on the ant corre-
sponding to the vector field F(x, y) = (−y, x). In one walk of the ant around the boundary
of the rock, how much energy does the wind impart on the ant? In other words, what is∫
γ1
F · ds?

Solution. We draw the situation here.
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γ1

γ2

As labelled above, let γ1 denote the perimeter of the rock, and γ2 denote the perimeter of
the pond. Let R denote the region between the outer curve and the inner curve. We want
to calculate ∫

γ1

F · dS.

This is. . . hard, because, well, we don’t actually know what γ1 is. However, we can get
around this with Green’s theorem!

In particular: notice that Green’s theorem says that the integral of
(
∂F2
∂x −

∂F1
∂y

)
over R

is equal to the integral of F over the two boundary components γ1, γ2, provided that they’re
both oriented (as drawn) so that R is always on the left-hand-side of each curve. In other
words, ∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
γ1

F · ds+

∫
γ2

F · ds.

So, we can solve for the integral we want to study, in terms of two other integrals:∫
γ1

F · ds =

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA−

∫
γ2

F · ds.

These are, surprisingly, things we can calculate. In specific, we have that∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
R

(1− (−1)) dA =

∫∫
R

2dA = 2 · (surface area of R).

Because the pond started with 16π cubic centimeters of water and had height h after we
dropped the rock in, we know that R has surface area 16π

h , and therefore that this integral
is 32π

h .
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As well, we can find
∫
γ2
F · ds. We parametrize γ2 as γ2(t) = (4 cos(t), 4 sin(t)):∫

γ2

F · ds =

∫ 2π

0
(−4 sin(t), 4 cos(t)) · (−4 sin(t), 4 cos(t)) dt =

∫ 2π

0
16dt = 32π.

Therefore, we can combine these two integrals to calculate
∫
γ1
F · ds:∫

γ1

F · ds = 32π

(
1

h
− 1

)
.

This is pretty cool: we know exactly how much work was done by this wind current,
even though we have no idea what path we integrated over!

Question 3. Let T be a triangle with vertices (1, 0, 0), (0, 2, 0), (0, 0, 3). If this triangle is
made out of some material with uniform density across its surface, what is the x-coördinate
of the center of mass of T?

Solution. We want to find the x-coördinate of the center of mass of T . This is the “average”
x-coördinate over our entire surface. Recall the following: if we want to find the average
value of a function f on a surface T , we want to find the integrals

∫∫
T fdA and

∫∫
T 1dA,

and divide the first of these two integrals by the second: this gives us the average value of
f over T .

So. We start by parametrizing our triangle. We do this by considering coördinates
one-by-one. We first look at x: over our entire triangle, x ranges from 0 to 1.

We now look at the possible range of y-values, given x. We do this by projecting our
triangle onto the xy-plane: there, this is the triangle with vertices (0, 0), (1, 0), (0, 2).

Given any fixed value of x, we can see that y ranges from 0 to 2− 2x.
Finally, we need to solve for z given x and y. To do this, we just need to find the plane

this triangle lies in: this will give us an equation relating x, y and z. We do this by taking
the generic equation for a plane

ax+ by + cz = d

and plugging in the three points (1, 0, 0), (0, 2, 0), (0, 0, 3) into this equation:

a = d, b =
d

2
, c =

d

3
.
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This gives us that our plane has the equation

dx+
d

2
y +

d

3
z = d,

which (if we divide by d) becomes

x+
y

2
+
z

3
= 1.

Solving for z gives us

z = 3− 3x− 3y

2
.

So, we can parametrize our triangle via the map T (x, y) =
(
x, y, 3− 3x− 3y

2

)
, where x

ranges from 0 to 1 and (given x) y ranges from 0 to 2− 2x.
So, if we want to find

∫∫
T 1dA, we can just use this parametrization:∫∫

T
1 dA =

∫ 1

0

∫ 2−2x

0

∣∣∣∣∣∣∣∣∂T∂x × ∂T

∂y

∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

∣∣∣∣∣∣∣∣(1, 0,−3

)
×
(

0, 1,−3

2

)∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

∣∣∣∣∣∣∣∣(3,
3

2
, 1

)∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

√
9 +

9

4
+ 1 dxdy

=

∫ 1

0

∫ 2−2x

0

7

2
dxdy

=

∫ 1

0
7− 7x dx

=
7

2
.

Similarly, if we want to find
∫∫
T xdA, we can do mostly the same thing:∫∫

T
x dA =

∫ 1

0

∫ 2−2x

0
x

∣∣∣∣∣∣∣∣∂T∂x × ∂T

∂y

∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

7x

2
dxdy

=

∫ 1

0
7x− 7x2 dx

=
7

6
.

Therefore, the x-coördinate of the center of mass is just the ratio of these two integrals,
i.e. 7/6

7/2 = 1
3 .
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Question 4. Let T be the same triangle as in Question 3. Integrate the vector field
F(x, y, z) = (xy, yz, zx) over the perimeter of this triangle, oriented in the counterclock-
wise direction as viewed from the positive octant.

Solution. We could parametrize the boundary of this triangle, but that seems hard. In-
stead, we will use Stokes’s theorem, which says that∫

∂T

F · ds =

∫∫
T

∇× F · dS.

Using this, we can instead integrate ∇ × F over the triangle itself, because we already
parametrized that! Convenient.

We do this here.∫∫
T

∇× F · dS =

∫ 1

0

∫ 2−2x

0
(∇× F) ·

(
∂T

∂x
× ∂T

∂y

)
dA

=

∫ 1

0

∫ 2−2x

0

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
·
(
∂T

∂x
× ∂T

∂y

)
dA

=

∫ 1

0

∫ 2−2x

0
(0− y, 0− z, 0− x)

∣∣∣
T (x,y)

·
(

3,
3

2
, 1

)
dA

=

∫ 1

0

∫ 2−2x

0
−3y − 3

2

(
3− 3x− 3

2
y

)
− x dA

=

∫ 1

0

∫ 2−2x

0
−9

2
− 3

4
y +

7

2
x dA

=

∫ 1

0
−9 + 9x− 3

8
(2− 2x)2 + 7x− 7x2 dA

=

∫ 1

0
−17

2
x2 + 19x− 21

2
dA

= −17

6
+

19

2
− 21

2
= −23

6
.

Question 5. Directly calculate the integral of F (x, y, z) = (3x2y,−3xy2, z) over the surface
of the unit cube, using the orientation depicted below. Then, use the divergence theorem to
calculate this in a much faster manner.
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x

y

z

Solution. If we want to do this directly, break the unit cube into its six sides

[0, 1]× [0, 1]× {0}, [0, 1]× [0, 1]× {1},
[0, 1]× {0} × [0, 1], [0, 1]× {1} × [0, 1]

{0} × [0, 1]× [0, 1], {1} × [0, 1]× [0, 1],

notice that the normals to these sides are precisely the normals (0, 0,±1), (0,±1, 0), (±1, 0, 0)
as depicted in the above diagram, and calculate∫∫

surface of cube

F · dS

=

∫ 1

0

∫ 1

0
F
∣∣
(x,y,0)

· (0, 0,−1)dxdy +

∫ 1

0

∫ 1

0
F
∣∣
(x,y,1)

· (0, 0, 1)dxdy

+

∫ 1

0

∫ 1

0
F
∣∣
(x,0,z)

· (0,−1, 0)dxdz +

∫ 1

0

∫ 1

0
F
∣∣
(x,1,z)

· (0, 1, 0)dxdz

+

∫ 1

0

∫ 1

0
F
∣∣
(0,y,z)

· (−1,−0, 0)dydz +

∫ 1

0

∫ 1

0
F
∣∣
(1,y,z)

· (1, 0, 0)dydz

=

∫ 1

0

∫ 1

0
0dxdy +

∫ 1

0

∫ 1

0
1dxdy +

∫ 1

0

∫ 1

0
0dxdz +

∫ 1

0

∫ 1

0
−3x dxdz

+

∫ 1

0

∫ 1

0
0dydz +

∫ 1

0

∫ 1

0
3ydydz

=1.

Alternately, if you use the divergence theorem, we can calculate this in a much faster
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way: ∫∫
surface of cube

F · dS =

∫∫∫
cube

(divF )dV

=

∫ 1

0

∫ 1

0

∫ 1

0
(6xy − 6xy + 1)dxdydz

=

∫ 1

0

∫ 1

0

∫ 1

0
1dxdydz = 1.

Question 6. Let c(t) =
(

cos(t)− sin2(t)
2 , cos(t) sin(t)

)
denote the “fish curve” drawn below:

-.5 .5 1-1

x

y

Find the area contained within this curve.

Solution. This looks like a textbook example of when to use the Green’s theorem formula
for the area contained in a curve. Specifically, Green’s theorem, as applied to finding the
area contained within a curve, says that if a region R is bounded by some simple closed
curve c(t) that is oriented positively (i.e. so that R is on the left as we travel along c(t)),
then

area(R) =

∫∫
R

1dxdy
Green’s theorem︷︸︸︷

= =
1

2

∫
c(t)

(−y, x) dc.
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If we just plug in our curve, we get that 1
2

∫
c(t) (−y, x) dc is

1

2

∫ 2π

0

(
− cos(t) sin(t), cos(t)− sin2(t)

2

)
·
(
− sin(t)− sin(t) cos(t), cos2(t)− sin2(t)

)
dt

=
1

2

∫ 2π

0

(
cos(t) sin2(t) + cos2(t) sin2(t) + cos3(t)− cos(t) sin2(t)− cos2(t) sin2(t)

2
+

sin4(t)

2

)
dt

=
1

2

∫ 2π

0

(
cos2(t) sin2(t)

2
+ cos3(t) +

sin4(t)

2

)
dt

=
1

2

∫ 2π

0

(
sin2(2t)

8
+ cos(t)(1− sin2(t)) +

(1− cos(2t))2

8

)
dt

=
1

2

∫ 2π

0

(
1− cos(4t)

16
+ cos(t)(1− sin2(t)) +

1− 2 cos(2t) + cos2(2t)

8

)
dt

=
1

2

∫ 2π

0

(
1− cos(4t)

16
+ cos(t)(1− sin2(t)) +

1− 2 cos(2t)

8
+

1 + cos(4t)

16

)
dt

=
1

2

∫ 2π

0

(
1

4
+ cos(t)(1− sin2(t))− cos(2t)

4

)
dt

=
1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣2π
0

=π/4.

But is this plausible? Well: looking at our fish curve, it seems to contain about (in the
head-part) the area of an ellipse from −.5 to 1 with y-height from −1 to 1, which is about
3π/2. This is much greater than π/4, the area of a circle with radius .5. So: something has
gone wrong!

What, specifically? Well, to apply Green’s theorem, we needed a simple closed curve
that was positively oriented. Did we have that here? No! In fact, our curve c has a self-
intersection: c(π/2) = c(3π/2), and in fact the tail part of our curve is oriented negatively
(i.e. if we travel around our curve from π/2 to 3π/2, our region is on the right-hand side.
In fact, we’ve calculated the area of the head minus the area in the tail!

To calculate what we want, we want to take the integral above evaluated from −π/2
to π/2 (the head) and then add the integral from 3π/2 to π/2 (travelling backwards here
makes it so that we get the right orientation on the tail.) Specifically, we have

1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣π/2
−π/2

=
1

2

(
π

8
− −π

8
+ 1− (−1) +

(
−1

3

)
− 1

3
+ 0− 0

)
=
π

8
+

2

3
,

while

1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣π/2
3π/2

=
1

2

(
−π

8
− π

8
+ 1− (−1) +

(
−1

3

)
− 1

3
+ 0− 0

)
=− π

8
+

2

3
;

therefore, our total area is π
8 + 2

3 +−π
8 + 2

3 = 4
3 .
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