
Math 94 Professor: Padraic Bartlett

Lecture 3: Derivatives in Rn

Week 3 UCSB 2015

This is the third week of the Mathematics Subject Test GRE prep course; here, we
review the concepts of derivatives in higher dimensions!

1 Definitions and Concepts

We start by reviewing the definitions we have for the derivative of functions on Rn:

Definition. The partial derivative ∂f
∂xi

of a function f : Rn → R along its i-th coördinate
at some point a, formally speaking, is the limit

lim
h→0

f(a + h · ei)− f(a)

h
.

(Here, ei is the i-th basis vector, which has its i-th coördinate equal to 1 and the rest equal
to 0.)

However, this is not necessarily the best way to think about the partial derivative, and
certainly not the easiest way to calculate it! Typically, we think of the i-th partial derivative
of f as the derivative of f when we “hold all of f ’s other variables constant” – i.e. if we
think of f as a single-variable function with variable xi, and treat all of the other xj ’s as
constants. This method is markedly easier to work with, and is how we actually *calculate*
a partial derivative.

We can extend this to higher-order derivatives as follows. Given a function f : Rn → R,
we can define its second-order partial derivatives as the following:

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
.

In other words, the second-order partial derivatives are simply all of the functions you can
get by taking two consecutive partial derivatives of your function f .

Definition. Often, we want a way to talk about all of the first-order derivatives of a
function at once. The way we do this is with the differential, or total derivative. We
define this as follows: the total derivative of a function f : Rn → Rm is the following matrix
of partial derivatives:

D(f)
∣∣
a

=


∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xn

(a)
...

...
. . .

...
∂fn
∂x1

(a) ∂fn
∂x2

(a) . . . ∂fn
∂xn

(a)


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For a function f : Rn → R, this has the special name gradient, and is denoted

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . .

∂f

∂xn

)
For a function f : Rn → R, a point a is called a critical point if it is a stationary point, or
f is not differentiable in any neighborhood of a. Similarly, a point a ∈ Rn is called a local
maxima of f if there is some small value r such that for any point x within distance r of
~a, we have f(x) ≤ f(a). (A similar definition holds for local minima.)

Definition. For functions f : Rn → R, we can also define an object that generalizes the
“second-derivative” from one-dimensional calculus to multidimensional calculus. We do this
with the Hessian, which we define here. The Hessian of a function f : Rn → R at some
point a is the following matrix:

H(f)
∣∣
a

=


∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)

 .
Finally: like with the normal second derivative, we can use H(f)

∣∣
a

to create a “second-
order” approximation to f at a, in a similar fashion to how we used the derivative to
create a linear (i.e. first-order) approximation to f . We define this here: if f : Rn → R
is a function with continuous second-order partials, we define the second-order Taylor
approximation to f at a as the function

T2(f)
∣∣
a
(a + h) = f(a) + (∇f)(a) · h +

1

2
· (h1, . . . hn) ·H(f)

∣∣
a
· (h1, . . . hn)T .

You can think of f(a) as the constant, or zero-th order part, (∇f)(a) ·h as the linear part,
and H(f)

∣∣
a
(h) as the second-order part of this approximation.

Definition. Finally, we have two useful physical phenomena, the divergence and curl,
that have natural interpretations. Given a C1 vector field F : R3 → R3, we can defind the
divergence and curl of F as follows:

• Divergence. The divergence of F , often denoted either as div(F ) or ∇ · F , is the
following function R3 → R:

div(F ) = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

• Curl. The curl of F , denoted curl(F ) or ∇× F , is the following map R3 → R3:

curl(F ) = ∇× F =

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
.
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Often, the curl is written as the “determinant” of the following matrix:

det


i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3


Given a function F : R2 → R2, we can also find its curl by “extending” it to a function
F ? : R3 → R3, where F ?1 (x, y, z) = F (x, y), F ?2 (x, y, z) = F (x, y), and F ?3 (x, y, z) = 0. If
someone asks you to find the curl of a function that’s going from R2 → R2, this is what
they mean.

Also, divergence naturally generalizes to working on any function Rn → Rn; just take
the sum of ∂Fi

∂xi
over all of the variables the function depends on.

We also have several theorems that we know about the derivative! We list a few here.
Here’s how we extend the product and chain rules:

Theorem. Suppose that f, g are a pair of functions Rn → Rm, and we’re looking at the
inner product1 f · g of these two functions. Then, we have that

D(f · g)
∣∣∣
a

= f(a) · (D(g))
∣∣∣
a

+ g(a) · (D(f))
∣∣∣
a
.

Theorem. Take any function g : Rm → Rl, and any function f : Rn → Rm. Then, we have

D(g ◦ f)
∣∣∣
a

= D(g)
∣∣∣
f(a)
·D(f)

∣∣∣
a
.

One interesting/cautionary tale to notice from the above calculations is that the partial
derivative of g ◦ f with respect to one variable xi can depend on many of the variables and
coördinates in the functions f and g!

I.e. something many first-year calculus students are tempted to do on their sets is to
write

∂(g ◦ f)i
∂xj

∣∣∣
a

=
∂gi
∂xj

∣∣∣
f(a)
· ∂fi
∂xj

∣∣∣
a
.

DO NOT DO THIS. Do not do this. Do not do this. Ever. Because it is wrong. Indeed,

if you expand how we’ve stated the chain rule above, you can see that ∂(g◦f)i
∂xj

∣∣∣
a

– the (i, j)-th

entry in the matrix D(g ◦ f) – is actually equal to the i-th row of D(g)
∣∣∣
f(a)

multipled by

the j-th column of D(f)
∣∣∣
a

– i.e. that

∂(g ◦ f)i
∂xj

∣∣∣
a

=

[
∂gi
∂x1

∣∣∣
f(a)

. . . ∂gi∂xm

∣∣∣
f(a)

]
·


∂f1
∂xj

∣∣∣
a
...

∂fm
∂xj

∣∣∣
a

 .
1Recall that the inner product of two vectors u,v is just the real number

∑m
i=1 uivi.
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Notice how this is much more complex! In particular, it means that the partials of g ◦ f
depend on all sorts of things going on with g and f , and aren’t restricted to worrying about
just the one coördinate you’re finding partials with respect to.

The moral here is basically if you’re applying the chain rule without doing a *lot* of
derivative calculations, you’ve almost surely messed something up. So, when in doubt, just
find the matrices D(f) and D(g)!

Here’s how the derivative interacts with finding maxima and minima:

Theorem. A function f : Rn → R has a local maxima at a critical point a if all of its
second-order partials exist and are continuous in a neighborhood of a, and the Hesssian of
f is negative-definite2 at a. Similarly, it has a local minima if the Hessian is positive-definite
at a. If the Hessian takes on both positive and negative values there, it’s a saddle point:
there are directions you can travel where your function increase, and others where it will
decrease. Finally, if the Hessian is identically 0, you have no information as to what your
function may be up to: you could be in any of the three above cases.

In the section above, we talked about how to use derivatives to find and classify the
critical points of functions Rn → R. This allows us to find the global minima and maxima
of functions over all of Rn, if we want! Often, however, we won’t just be looking to find the
maximum of some function on all of Rn: sometimes, we’ll want to maximize a function given
a set of constraints. For example, we might want to maximize the function f(x, y, z) = x+y
subject to the constraint that we’re looking at points where x2 + y2 = 1. How can we do
this?

Initially, you might be tempted to just try to use our earlier methods: i.e. look for
places where Df is 0, and try to classify these extrema. The problem with this method,
when we have a set of constraints, is that it usually won’t find the maxima or minima on
this constraint: because it’s only looking for local maxima or minima over all of Rn, it will
ignore points that could be maxima or minima on our constrained surface! I.e. for the f, g
we mentioned above, we know that ∇(f) = (1, 1), which is never 0; however, we can easily
see by graphing that f(x, y) = x+ y should have a maximum value on the set x2 + y2 = 1,
specifically at x = y = 1√

2
.

Theorem. So: how can we find these maxima and minima in general? The answer is the
method of Lagrange multipliers, which we outline here.

2The Hessian H(f)
∣∣
a

is positive-definite if and only if the matrix
∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)


is positive-definite. (The same relation holds for being negative-definite.)

Recall from Math 1a that a matrix is positive-definite if and only if all of its eigenvalues are real and
positive. Similarly, a matrix is negative-definite if and only if all of its eigenvalues are real and negative.
If some of a matrix’s eigenvalues are 0, some are negative and others are positive, or if there are less real
eigenvalues than the rank of the matrix (i.e. some eigenvalues are complex,) then the matrix is neither
positive-definite or negative-definite.

Note also that because the Hessian is symmetric whenever the mixed partials of our function are equal,
and symmetric matrices have only real eigenvalues, you really should never get complex-valued eigenvalues.
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Suppose that f : Rn → R is a function whose extremal values {x} we would like to find,
given the constraints g(x) = c, for some constraining function g(x). Then, we have the
following result: if a is an extremal value of f restricted to the set S = {x : ∀i, g(x) = c},
then either one of ∇(f)

∣∣
a

is 0, doesn’t exist, or there is some constant λ such that

∇(f)
∣∣
a

= λ∇(g)
∣∣
a
.

Theorem. We have a pair of rather useful theorems about the divergence and curl of
functions, which we state here:

• For any C2 function F , div(curl(F )) is always 0.

• For any C2 function F , curl(grad(F )) is always 0.
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2 Worked Examples

Example. (Lagrange multipliers; level curves.) Consider the function

g(x, y) = e−x
2−y2 − x2y2.

(a) Draw several level curves of this function.

(b) Let f(x, y) = x + y, and let S be the constraint set given by the level curve {(x, y) :
g(x, y) = c}. For what values of c does f

∣∣
S

have a global maximum? For what values
does it fail to have a global maximum: i.e. for what values of c is f unbounded on S?

(c) For c = 1
4 , find the global maximum of f on the above constraint set S = {(x, y) :

g(x, y) = c}.

Solution. We graph g(x, y) = z in red, along with three level curves in different shades of
blue, in the following picture.

Roughly speaking, there are three kinds of level curves for our function:

1. Level curves g(x, y) = c, where c is close to 1. There, because we need g to be close to
1, we need to have x and y very small (so that the e−x

2−y2 part is as close to 1 as we
can get it, and the −x2y2 part is not too large.) In particular, this forces us to have a
roughly circular shape, as for very small values of (x, y) the x2y2 part is insignificant
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and our function looks roughly like e−x
2−y2 , which is roughly 1− x2 − y2 (via Taylor

series) for small values of (x, y).

2. Level curves g(x, y) = c, where c is greater than 0, but not by much. For these values
of c, we wind up having kind of a “four-armed” shape, with arms stretching out along
the x- and y- axes. This is because when one of our coordinates is nearly zero, the
other can become much larger (because our function is roughly e−x

2−y2 then), whereas
when the coordinates are roughly the same, the dominant term is now the −x2y2 term,
and we need to have both x and y be much smaller.

3. Level curves g(x, y) = c, where c is ≤ 0. In these cases, our level curves look like
hyperbola-style curves, one in each quadrant. This is because on each axis, our func-
tion g(x, y) can never be 0, as the e−x

2−y2-part is always positive and the −x2y2 part
is zero on the axes.

This graphing and subsequent analysis suggests an answer to part (b), as well:

Claim. Our function f(x, y) has a global maximum on the curve g(x, y) = c if and only if
1 ≥ c > 0.

Proof. If c > 1, then there are no points (x, y) such that g(x, y) = c, because e−x
2−y2 is

bounded above by e0 = 1, while −x2y2 is bounded above by 0.
So: suppose that 1 ≥ c > 0. Then, if (x, y) are such that g(x, y) = c, we know that in

particular

e−x
2−y2 ≥ c

⇒ − x2 − y2 ≥ ln(c)

⇒ x2 + y2 ≤ − ln(c)

⇒
√
x2 + y2 ≤

√
− ln(c)

⇒ ||(x, y)|| ≤
√
− ln(c),

i.e. the point (x, y) can be no further than
√
− ln(c) from the origin. (Because 1 ≥ c > 0, we

know that −∞ < ln(c) ≤ 0, and therefore that this is a well-defined finite and real-valued
bound on distances.)

Therefore, the set of points such that g(x, y) = c is bounded. We also know that it is
closed, because it is the level curve of a continuous function. Therefore, we know that any
continuous function (in particular, f) will attain its global maxima and minima on this set,
and do so at the critical points identified by the method of Lagrange multipliers.

Finally, suppose that c ≤ 0. In this case, our claim is that f does not attain its global
maximum on g(x, y) = c. To prove this, pick any value of n: we want to find a point (x, y)
on our curve such that f(x, y) > n.

To do this, we simply use the intermediate value theorem. Pick any n, and choose x
such that −x2 < c− 1, and also x > n. Then, we know that

g(x, 0) = e−x
2−0 − x2 · 0 = e−x

2
> 0 ≥ c,
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while

g(x, 1) = e−x
2−1 − x2 · 1 = e−x

2 − x2 < e−x
2 − c− 1 < c,

because e−x
2
< 1.

Therefore,because g(x, 0) > c and g(x, 1) < c, by the intermediate value theorem, there
is some value of y between 0 and 1 such that g(x, y) = c. At this point (x, y), we know that

f(x, y) = x+ y ≥ n+ 0 ≥ n,

which is what we wanted to prove: i.e. we’ve shown that we can find points on our curve
along which f(x, y) is arbitrarily large, and therefore that there is no global maximum.

Finally, with this theoretical discussion out of the way, we can turn to the calculational
part of (c), which asks us to find the global maximum of our function f on the constraint set
g(x, y) = 1

4 . First, note that by our above discussion, we know that a global maximum does
exist, because when 1 ≥ c > 0 we’ve shown that our constraint set is closed and bounded.
Furthermore, to find this maximum, it suffices to use the method of Lagrange multipliers
to find all of the critical points of our function restricted to this curve, and simply select
the largest value amongst these critical points. (Again, this is because g(x, y) = c is closed
and bounded, which means that our global maximum must occur a critical point.)

So: we calculate. We are looking for any points (x, y) such that either

• ∇(f) or ∇(g) are 0,

• ∇(f) or ∇(g) are undefined, or

• there is some nonzero constant λ such that ∇(f) = λ∇(g).

Because

∇(f)(x, y) = (1, 1) ,

we can immediately see that ∇(f) is never undefined or zero.
Similarly, because

∇(g) =
(
−2xe−x

2−y2 − 2xy2,−2ye−x
2−y2 − 2yx2

)
,

we can see that the first component of ∇(g) is zero if and only if

0 = −2xe−x
2−y2 − 2xy2

⇔0 = −2x
(
e−x

2−y2 + y2
)

⇔0 = x, because e−x
2−y2 + y2 is strictly positive.

Similarly, we can see that the second component of ∇(g) is zero if and only if

0 = −2ye−x
2−y2 − 2yx2

⇔0 = −2y
(
e−x

2−y2 + x2
)

⇔0 = y, because e−x
2−y2 + x2 is strictly positive.
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So ∇(g) is always defined and is only zero at (0, 0), which is not a point on our curve
g(x, y) = 1

4 . Therefore, the only points we’re concerned with are ones at which ∇(f) =
λ∇(g); i.e. points such that

∇(f) = (1, 1) = λ∇(g) = λ
(
−2xe−x

2−y2 − 2xy2,−2ye−x
2−y2 − 2yx2

)
⇔− 2xe−x

2−y2 − 2xy2 = −2ye−x
2−y2 − 2yx2,

because the above equation is equivalent to forcing both the left and right coordinates of
∇(g) to equal the same quantity (namely, 1

λ .)
Solving, we can see that this is equivalent to

0 = 2xe−x
2−y2 + 2xy2 − 2ye−x

2−y2 − 2yx2

⇔2(x− y)e−x
2−y2 − 2xy(x− y) = 0.

If x− y = 0, i.e. x = y, this equation holds. Otherwise, we can divide through by 2(x− y),
and get

e−x
2−y2 = xy.

Plugging this into our constraint equation g(x, y) = 1
4 gives us

e−x
2−y2 − (xy)2 =

1

4
⇒ (xy)− (xy)2 =

1

4
⇒ xy =

1

2
,

by thinking of “xy” as one term and using the quadratic formula. But, if we think about
what this means for the equation e−x

2−y2 = xy, and specifically use y = 1
2x , we have

1

2
= xy = e−x

2−y2 = e−x
2− 1

4x2 .

This is impossible! In specific, by taking a single-variable derivative, you can easily see that
the largest value of −x2 − 1

4x2
happens at x = 1√

2
, at which this is −1. This means that

the largest that e−x
2 − 1

4x2
gets is e−1 = 1

e , which is smaller than 1
2 .

Therefore, the only points at which ∇(f) = λ∇(g) are those at which x = y. Plugging
this into our constraint g(x, y) = 1

4 yields

e−2x
2 − x4 =

1

4
⇒x ≡ ±.65.

The function f(x, y) = x + y is equal to 1.3 at the point (.65, .65) and is equal to −1.3
at (−.65,−.65). Therefore, by our discussion earlier about how f must attain its global
minima and maxima at the critical points discovered by the Lagrange multiplier process,
we can safely conclude that (.65, .65) is roughly the point at which f(x, y) attains its global
maxima, which is roughly 1.3.

Example. (Tangent planes.) Let S be the surface in R3 formed by the collection of all
points (x, y, z) such that exyz = e. Find the tangent plane to S at (1, 1, 1).
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Solution. One way to attack this problem is to apply natural logs to both sides, which lets
us write S as the collection of all points (x, y, z) such that xyz = 1; i.e. all points x, y 6= 0
such that z = 1

xy . In other words, we can write S as the graph of the function f(x, y) = 1
xy .

We know that the gradient of f(x, y) is just(
− y

(xy)2
,− x

(xy)2

)
,

which at 1 is just (−1,−1). Therefore, by using the formula for describing the first-order
Taylor approximation – i.e. tangent plane – of functions of the form f(x, y) = z, we have
that the tangent plane to our surface at (1, 1, 1) is just

(z − 1) = ∇(f)
∣∣∣
(1,1,1)

· (x− 1, y − 1) = (−1,−1) · (x− 1, y − 1)

⇒z − 1 + x− 1 + y − 1 = 0.

Alternately, we also discussed a second formula in class for finding tangent planes to
surfaces of the form g(x, y, z) = C, at some point (a, b, c). Specifically, we observed that
the gradient of g at the point (a, b, c) was orthogonal to the tangent plane to our surface
at this point: in other words, that we could define our tangent plane as just the set of all
vectors orthogonal to the gradient of g through this point. As a formula, this was

0 = ∇(g)
∣∣∣
(1,1,1)

· (x− 1, y − 1, z − 1)

⇔0 = (yzexyz, xzexyz, xyexyz)
∣∣∣
(1,1,1)

· (x− 1, y − 1, z − 1)

⇔0 = (1, 1, 1) · (x− 1, y − 1, z − 1)

⇔0 = z − 1 + x− 1 + y − 1.

Reassuringly, we get the same answer no matter which method we pick.

Example. (Chain rule.) Let g : R4 → R be defined by the equation (w, x, y, z) = (wz−yx),
and hλ : R2 → R4 be defined by the equation hλ(a, b) = (a, λa, b, λb).

(a) Calculate the derivative of g ◦ hλ using the chain rule.

(b) Geometrically, explain why your answer in (a) is “obvious,” in some sense.

Solution. So, we know that both g and hλ are continuous functions on all of their domains;
therefore, we know that their composition is continuous everywhere. Therefore, we know
that the total derivative of g ◦ hλ is just given by the partial derivatives of g ◦ hλ: i.e.
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T (g ◦ hλ) = D(g ◦ hλ). Therefore, we can use the chain rule:

D(g ◦ hλ)

∣∣∣∣∣
(a,b)

= D(g)

∣∣∣∣∣
hλ(a,b)

·D(hλ)

∣∣∣∣∣
(a,b)

=
[
z −y −x w

] ∣∣∣∣∣
hλ(a,b)

·


1 0
λ 0
0 1
0 λ



=
[
λb −b −λa a

]
·


1 0
λ 0
0 1
0 λ


= [λb− λb, λa− λa]

= [0, 0].

Notice that this is geometrically somewhat obvious because g is just the determinant of

the matrix

(
w x
y z

)
, while the function hλ just outputs the rank-1 matrix

(
a b
λa λb

)
.

Because the determinant of a rank 1 matrix is 0, we have that g ◦ hλ is identically 0, and
therefore also has derivative 0.

Example. (Taylor series; directional derivatives.) Let g(x, y) = sin(xy).

(a) Calculate the directional derivative of g(x, y) at (1, 2) in the direction (3, 4).

(b) Calculate the second-order Taylor approximation of g(x, y) at (0, 0).

Solution. Because the gradient of g is just

∇(g) = (y cos(xy), x cos(xy)),

we know that the directional derivative at (1, 2) in the direction (3, 4) is just given to us by
the dot product of ∇(g)(1, 2) with the unit-length vector in the direction (3, 4), given
by 1
||(3,4)|| · (3, 4) = 1√

9+16
(3, 4) =

(
3
5 ,

4
5

)
:

∇(g)(1, 2) ·
(

3

5
,
4

5

)
= (2 cos(1), cos(2)) ·

(
3

5
,
4

5

)
=

6 cos(1) + 4 cos(2)

5
.

To calculate the Taylor approximation of g at (0, 0), we just need to construct the
following function:

T2(g)
∣∣
(0,0)

(h1, h2) = g(0, 0) +∇(g)
∣∣
(0,0)
· (x, y) +H(g)

∣∣
(0,0)

(x, y).
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To do this, simply note that the Hessian H(g) of g is just

H(g)
∣∣
(0,0)

(h1, h2) =
1

2

[
h1, h2

] [ −y2 sin(xy) cos(xy)− xy sin(xy)
cos(xy)− xy sin(xy) −x2 sin(xy)

] ∣∣∣∣∣
(0,0)

[
h1
h2

]

=
1

2

[
h1, h2

] [ 0 1
1 0

]
·
[
h1
h2

]
=

1

2

[
h1, h2

] [ h2
h1

]
=

1

2
(h1h2 + h1h2)

= h1h2,

and therefore that

T2(g)
∣∣
(0,0)

(h1, h2) = g(0, 0) +∇(g)
∣∣
(0,0)
· (x, y) +H(g)

∣∣
(0,0)

(x, y)

= sin(0) + (0 cos(0), 0 sin(0)) · (x, y) + xy

= xy.

Therefore, the second-order approximation to sin(xy) at the origin is just T2(x, y) = xy.

Example. (Using derivatives to study local extrema.) Let

f(x, y) = −(x8 + y8) + 4(x6 + y6)− 4(x4 + y4).

Find all of the critical points of f , and classify them as local maxima, minima, or saddle
points.

Solution. We start by graphing our function:
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Roughly speaking, it looks like we have four global maxima, at least four saddle points
between these maxima, and probably a bunch of weird things going on in the interior part
of our function which are hard to determine from our picture. Probably a local minima in
there.

Picture aside, our task here is pretty immediate:

1. First, we want to calculate ∇(f), and find all of the points where it is either undefined
or 0. These are our critical points.

2. We then want to calculate H(f), the Hessian of f , for each critical point. If the
Hessian is positive-definite3, then we know that this point is a local minimum;
if it is negative-definite, then it’s a local maximum; if it has both a positive
eigenvalue and a negative eigenvalue, it’s a saddle point; and if it’s anything
else, we have no idea what’s going on, and will need to explore its behavior using
other methods.

So: by calculating, we can see that

D(f) = (−8x7 + 24x5 − 16x3,−8y7 + 24y4 − 16y3),

and therefore that this is equal to 0 whenever

0 = −8x7 + 24x5 − 16x3

⇔x = 0, or

0 = −8x4 + 24x2 − 16

⇔0 = (x2 − 2)(x2 − 1)

⇔x = ±
√

2,±1,

and

0 = −8y7 + 24y5 − 16y3

⇔y = 0,±
√

2,±1.

So we have twenty-five critical points, consisting of five choices of x and five choices of y. To
classify these points, we look at the matrix of second-order-partials formed in the Hessian:

∂2f
∂x1∂x1

(a) . . . ∂2f
∂x1∂xn

(a)
...

. . .
...

∂2f
∂xn∂x1

(a) . . . ∂2f
∂xn∂xn

(a)

 =

[
−56x6 + 120x4 − 48x2 0

0 −56y6 + 120y4 − 48y2

]
.

3We say that the Hessian is positive-definite if the associated matrix


∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)


of second partial derivatives is positive-definite: i.e. it has n eigenvalues and they’re all strictly positive.
Negative-definite is similar, except we ask that all of the eigenvalues exist and are strictly negative.
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When x = ±1, the polynomial −56x6+120x4−48x2 is 16, which is positive; when x = ±
√

2,
this polynomial is−64, which is negative; finally, when x = 0 this polynomial is 0. Therefore,
at the points

(±1,±1)

the Hessian is positive-definite, and therefore our function has a local minimum, while at
the points

(±
√

2,±
√

2)

the Hessian is negative-definite, and therefore our function has a local maximum, while at

(±
√

2,±1), (±1,±
√

2),

the Hessian has both a negative and a positive eigenvalue (try (1, 0), (0, 1) for two eigenvec-
tors!), and therefore our function has a saddle point.

This leaves just the points with a zero-coordinate, at which the Hessian is useless to us.
There, we need to analyze how small changes in our function

f(x, y) = −(x8 + y8) + 4(x6 + y6)− 2(x4 + y4)

change its values at such points!
So: for very small values of x, y, we know that x4 � x6, x8 and y4 � y6, y8; therefore,

very very close to the origin, our function is roughly just −2(x4+y4), which is a upside-down
parabola with a maximum at the origin. Therefore, we can see that this point is actually
a local maximum, because (using our approximation) at all values very close to the origin
that are not the origin, our function is roughly −2(x4 + y4) and therefore quite decidedly
< 0, its value at the origin. So (0, 0) is a local maxima!

For the other values, we can do a similar (but more in-depth) analysis. For convenience’s
sake, let g(z) = −z8 + 4z6 − 4z4; we can then write f(x, y) = g(x) + g(y). By the same
logic as above, for arbitrarily small values of z we can write g(z) as approximately −4z4,
as z4 � z6, z8 and thus the z4 terms dominate the function g(z).

In general, we can extend our observation above to an approximation of (c+ ε)n for any
constant c, power n, and very small ε, by using the binomial theorem:

(z + ε)n =

n∑
i=0

(
n

k

)
· zn−kεk

= zn + nεzn−1 +
n(n− 1)

2
zn−2ε2 + (terms scaled by ε4)

≈ zn + nεzn−1 +
n(n− 1)

2
zn−2ε2

⇒ g(z + ε) = −(z + ε1)
8 + 4(z + ε1)

6 − 4(z + ε1)
4

≈ g(z) + (−8z7ε+ 24z5ε− 16z3ε) + (−56z6ε21 + 120z4ε21 − 48z2ε21)

⇒ g(z + ε)− g(z) ≈ (−8z7ε+ 24z5ε− 16z3ε) + (−56z6ε21 + 120z4ε21 − 48z2ε21).
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This is kind of horrible-looking, but we can work with it. In particular, it tells us that at
z = ±

√
2, we have

g((±
√

2) + ε)− g((±
√

2)) ≈ (−8(±
√

2)7ε+ 24(±
√

2)5ε− 16(±
√

2)3ε)

+ (−56(±
√

2)6ε2 + 120(±
√

2)4ε2 − 48(±
√

2)2ε2)

= 0 + (−56 · 8ε2 + 120 · 4ε2 − 48 · 2ε2)
= −64ε2,

and at z = ±1 we have

g((±1) + ε)− g((±1)) ≈ (−8(±1)7ε+ 24(±1)5ε− 16(±1)3ε)

+ (−56(±1)6ε2 + 120(±1)4ε2 − 48(±1)2ε2)

= 0 + (−56ε2 + 120ε2 − 48ε2)

= 16ε2.

(Note that we used our earlier observation that ±1,±
√

2 are roots of −8z7 + 24z5− 16z3 to
simplify the first parenthetical expression to 0.) In other words, small changes of g(z) near
0 or ±

√
2 yield decreases in our function, while small changes near ±1 yield increases!

This lets us classify our remaining points: we can now see that the points (0,±
√

2),
(±
√

2, 0) are local maxima, and that the points (0,±1) and (±1, 0) are saddle points.
Success!

Example. Take the vector field V (x, y) = (x2y2, x2 + y2) . Show that this vector field is
neither the curl nor the gradient of any function.

Proof. This is relatively straightforward. To show that V is not the gradient of any vector
field, we simply need to calculate the curl of V . If it is nonzero, then we know that it cannot
be a gradient.

Because V is a vector field on R2, in order to calculate its curl we treat it like a vector
field on R3 that has a 0 in its third component and does not depend on z. Then,

curl(V ) =

((
∂V3
∂y
− ∂V2

∂z

)
,

(
∂V1
∂z
− ∂V3

∂x

)
,

(
∂V2
∂x
− ∂V1

∂y

))
=
(
0− 0, 0− 0,

(
2x− 2yx2

))
,

which is not identically equal to 0.
Similarly, we can show that V is not a curl by calculating its divergence: if this is

nonzero, then V cannot be written as the curl of any vector field. We do this here:

div(V ) =
∂V1
∂x

+
∂V2
∂y

= 2xy2 + 2y,

which is clearly nonzero.
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