
Math 116 Professor: Padraic Bartlett

Lecture 6: Latin Squares

Week 10 UCSB 2015

I want to end this class with a brief introduction to an object that I spent the bulk of
my Ph.D studying: Latin squares!

1 Latin Squares

1.1 Definitions/Basics

Definition. A Latin square of order n is a n×n array filled with n distinct symbols such
that no symbol is repeated twice in any row or column. Usually it’s convenient to use the
symbols {1, 2, . . . n}, but in other situations we may use different symbol sets.

Example. Here are all of the Latin squares of order 2 on the symbols {1, 2}:

1 2

2 1

2 1

1 2
.

A quick observation we can make is the following:

Proposition. Latin squares exist for all n.

Proof. Behold!

1 2 . . . n− 1 n

2 3 . . . n 1
...

...
. . .

...
...

n 1 . . . n− 2 n− 1

(In general: we made the square above by placing the quantity 1 + (i + j mod n) in each
cell (i, j). This square is called the back circulant Latin square; it comes up a lot.)

Given this observation, a natural question to ask might be “How many Latin squares
exist of a given order n?” And indeed, this is an excellent question! So excellent, in fact,
that it turns out that we have no idea what the answer to it is; indeed, we only know the
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exact number of Latin squares of any given order up to 11.

n L(n), the number of Latin squares of size n

1 1

2 2

3 12

4 576

5 161280

6 812851200

7 61479419904000

8 108776032459082956800

9 5524751496156892842531225600

10 9982437658213039871725064756920320000

11 776966836171770144107444346734230682311065600000

12 ?

Asymptotically, the best we know (and you could show, given a lot of linear algebra tools)
that

L(n) ∼
( n
e2

)n2

.

Instead of doing this, however, I’d like to focus on what I do research in: partial Latin
squares!

Definition. A partial latin square of order n is a n × n array where each cell is filled
with either blanks or symbols {1, . . . n}, such that no symbol is repeated twice in any row
or column.

Example. Here are a pair of partial 4× 4 latin squares:

4

2

3 4

4 1 2

1

1

1

2

The most obvious question we can ask about partial latin squares is the following: when
can we complete them into filled-in latin squares? There are clearly cases where this is
possible: the first array above, for example, can be completed as illustrated below.

4

2

3 4

4 1 2

7→

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3
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However, there are also clearly partial Latin squares that cannot be completed. For
example, if we look at the second array

1

1

1

2

,

we can pretty quickly see that there is no way to complete this array to a Latin square:
any 4× 4 Latin square will have to have a 1 in its last column somewhere, yet it cannot be
in any of the three available slots in that last column, because there’s already a 1 in those
three rows.

Deciding whether a given partial Latin square is completeable to a Latin square is,
practically speaking, a useful thing to be able to do. Consider the following simplistic
model of a router:

• Setup: suppose you have a box with n fiber-optic cables entering it and n fiber-
optic cables leaving it. On any of these cables, you have at most n distinct possible
wavelengths of light that can be transmitted through that cable simultaneously. As
well, you have some sort of magical/electronical device that is capable of “routing”
signals from incoming cables to outgoing cables: i.e. it’s a list of rules of the form
(r, c, s), each of which send mean “send all signals of wavelength s from incoming cable
r to outgoing cable s.” These rules cannot conflict: i.e. if we’re sending wavelength
s from incoming cable r to outgoing cable s, we cannot also send s from r to t, for
some other outgoing cable t. (Similarly, we cannot have two transmits of the form
{(r, c, s), (r, t, s)} or {(r, c, s), (t, c, s)}.)

• Now, suppose that your box currently has some predefined set of rules it would like to
keep preserving: i.e. it already has some set of rules {(r1, c1, s1), . . .}. We can model
this as a partial Latin square, by simply interpreting each rule (r, c, s) as “fill entry
(r, c) of our partial Latin square with symbol s.”

• With this analogy made, adding more symbols to our partial Latin square is equivalent
to increasing the amount of traffic being handled by our router.

This example hopefully motivates why we care about completing partial Latin squares,
which lets us turn to the “what” part of our mathematical question: what kinds of partial
Latin squares have completions?

Let’s start simple.

Question. Suppose that we have a n × n partial Latin square L in which we’ve already
filled in the first n − 1 rows. Can we always complete this partial Latin square to a Latin
square: i.e. can we always fill in the last row?

Proof. The answer to this question is yes (as trying a few examples may lead you to believe.)
To prove this, consider the following simple algorithm for filling in our partial Latin square:

• Look at row n.
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• For each cell (n, i) in row n, look at the column i.

• There are n − 1 distinct symbols in column i, and therefore precisely one symbol s
that is not present in column i. Write symbol s in the cell (n, i).

We claim that this algorithm creates a Latin square. To check this, it suffices to check
whether any symbols are repeated in any row or column. By construction, we know that
our choice of symbol s does not cause any repetition of symbols in any column; as well,
we know that no symbol is repeated in any row other than possibly the n-th row, because
we started with a partial Latin square. Therefore, it suffices to check the n-th row for any
repeated symbols.

To do this, proceed by contradiction: i.e. suppose not, that there are two cells in the
bottom row such that we’ve placed the same symbols in those two cells. This means that
there is some symbol s that we’ve never written in our last row. But this means that this
symbol s is used somewhere in all n columns within the first n− 1 rows, which forces some
row in those first n− 1 to contain two copies of s, a contradiction.

Therefore, our algorithm works!

(As an aside, the above tactic of “make an algorithm” is ridiculously useful, and is something
we should remember and make frequent use of.)

Given our success above, it’s tempting to ask whether we can extend this result to
partial Latin squares where we’ve (say) filled in just the first n− 2 rows, or even in general
a partial Latin square where we’ve filled in the first k rows, for any value of k. As it turns
out, this is also possible! Consider the following definition and theorem:

Definition. A n × n Latin rectangle is a n × n partial Latin square in which the first
k rows are completely filled and the remaining n− k rows are completely empty, for some
value of k.

Theorem 1. Every Latin rectangle can be completed to a Latin square.

Before we can prove this result, we need the concept of a system of distinct repre-
sentatives, a fairly useful concept in mathematics:

Definition. Suppose that you take m sets A1, . . . Am. A system of distinct represen-
tatives for these sets is a collection of distinct “representative” elements a1, . . . am such
that ai ∈ Ai, for each i.

Not all collections of sets have systems of distinct representatives; consider {1, 2, 3}, {1, 2}, {1, 3}, {2, 3}.
We have four sets, but clearly cannot pick out four distinct elements from them as there
are only three distinct elements in total across all of our sets!

This generalizes nicely:

Observation. Suppose that A = {A1, . . . Am} is some collection of sets. Then if A has a
system of distinct representatives, then for any k ≤ m the union of any k of the sets in A
must contain at least k elements.
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Proof. This is easy to see: for any Ai1 , . . . Aik , let ai1 , . . . aik be the representatives of these
sets. These are all distinct by definition. Therefore, the union of the Ai1 , . . . Aik must
contain these ai1 , . . . aik and in particular contain at least k distinct elements, as claimed.

More interesting is the converse:

Observation. (Hall’s theorem.) Suppose that A = {A1, . . . Am} is some collection of sets
with the following property: for any k ≤ m, the union of any k of the sets in A contains at
least k elements. (We call this Hall’s property, after the mathematician that first noticed
its utility.)

Then A has a system of distinct representatives (SDR, for short.)

Proof. We proceed via a very useful mathematical idea: to construct something useful, we
should get rid of everything that’s not useful!

Which is to say: take any such A = {A1, . . . Am}. Suppose that there is some “redun-
dant” element x ∈ Ai such that deleting x from Ai doesn’t break our property. Then delete
it! If we can still succeed at finding a SDR for these smaller sets, then we can simply use it
for the larger sets, and we will have proven our claim.

Repeatedly delete “redundant” elements x as described above, until there are no more
such elements left. This leaves us with a collection A with the following two properties:

1. (Hall’s property.) For any k ≤ m, the union of any k of the sets in A contains at least
k elements.

2. If you delete any element from any Ai, the above property becomes false.

Here’s a thing that would make finding a SDR very easy: if every Ai was a singleton set
{ai}. If this held, then we would have that all of our ai-elements are distinct. (Otherwise, we
could take the union of two non-distinct {ai} sets, which would give us a union of two things
with size 1; this would break the Hall property and yield a contradiction.) Consequently,
we can just use the individual ai contents of each set as a SDR!

Here’s a thing that is true: every Ai set is a singleton set {ai}! We can prove this by
contradiction: assume that some Ak contains two different elements. Call them x and y.

If you delete either we must violate the Hall property, by assumption. Therefore there
must be some sets Ix, Iy of indices, neither containing k, such that∣∣∣∣∣Ak ∪

⋃
i∈Ix

Ai \ {x}

∣∣∣∣∣ ≤ |Ix|,∣∣∣∣∣∣Ak ∪
⋃
i∈Iy

Ai \ {y}

∣∣∣∣∣∣ ≤ |Iy|.

This is because if deleting one of x, y causes a problem, then it must cause a problem with
the set Ak we deleted x, y from; so we can assume that l must be one of the indices chosen
to break the Hall property. A contradiction to Hall’s property would mean that the size
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of that set of indices including k is strictly greater than the size of the union of our sets;
therefore, the size of that set of indices without k is greater than or equal to the size of this
union, which is precisely what we wrote above.

Let
⋃

i∈Ix Ai \ {x} = X and
⋃

i∈Iy Ai \ {y} = Y for short. Consider the two sets X ∪ Y ,
X ∩ Y . On one hand, we can see that

X ∪ Y = Ak ∪
⋃

i∈Ix∪Iy

Ai,

because x ∈ Ak \ {y} and y ∈ Ak \ {x}, so when we union X and Y we don’t have to worry
about the set-subtraction.

Similarly, when we form X ∩ Y , we get that

X ∩ Y ⊇
⋃

i∈Ix∩Iy

Ai,

by just ignoring the Ak set and only considering everything else they have in common.
But X ∪ Y,X ∩ Y are both unions of sets in A; so Hall applies, and we get that

|X ∪ Y | ≥ |Ix ∪ Iy|+ 1, |X ∩ Y | ≥ |Ix ∩ Iy| .
From our earlier work, we know that

|Ix|+ |Iy| ≥ |X|+ |Y |.

However, we know that for any two sets X,Y , we have |X| + |Y | = |X ∪ Y | + |X ∩ Y |; so
we actually have

|Ix|+ |Iy| ≥ |X ∪ Y |+ |X ∩ Y |
≥ |Ix ∪ Iy|+ |Ix ∩ Iy|+ 1

= |Ix|+ |Iy|+ 1,

by applying the same set-size trick (i.e. |Ix|+ |Iy| = |Ix∪Iy|+ |Ix∩Iy|) on the second-to-last
line.

This is a contradiction! Therefore each set Ai must have one element; so we have a
SDR, as claimed.

This result applies nicely to Latin rectangles. To see this: take any n× n partial Latin
square P that’s a Latin rectangle with k filled rows. For each column j, associate a set Aj

consisting of all of the symbols s that are not used in column j in these k filled rows.
This gives us a collection A = {A1, . . . An} of sets. Notice that any way to fill in the

k + 1-th row of P is precisely any way to pick out a SDR from A:

• The Latin property for each column means that for each j, the entry (k + 1, j) needs
to have not been used in earlier rows in that column; i.e. that the symbol for (k+1, j)
comes from Aj .

• The Latin property for the k+ 1-th row just asks that all of these chosen symbols are
distinct; i.e. that when we pick our representatives, they’re all distinct!
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So, if we want to fill in the k + 1-th row, we just need to find a system of distinct
representatives, or equivalently (by the theorem above) establish that the collection A
satisfies Hall’s property.

This is not too hard to do. Take any m of our sets Aj1 , . . . Ajm . If we count repeated
elements multiple times, we have m(n− k) elements in each set.

However, because each symbol must occur once in each filled row of anything with the
Latin property, every symbol in our Latin rectangle P must be used exactly k times, once
for each row. Therefore, for any symbol s there must be k columns in which s occurs, and
therefore n− k in which it does not (and thus n− k values of k for which s ∈ Aj .)

So, in particular, no element in Aj1 , . . . Ajm can be repeated more than n − k many
times, as it occurs in a maximum of n − k of these sets! So, if we’re in the worst-case
scenario where every element of Aj1 , . . . Ajm is repeated the maximum (n − k) number of

times, we have that the total number of distinct cells is m(n−k)
n−k = m, i.e. the number of

sets! So we have proven that for any Aj1 , . . . Ajm ,

|Aj1 ∪ . . . ∪Ajm | ≥ m,

and therefore that we satisfy Hall’s property.
This gives us our claimed result on Latin rectangles for free:

Corollary. Any Latin rectangle can be completed to a Latin square.

Proof. Take any n×n partial Latin square P that is a Latin rectangle on k filled rows. Use
the result above to fill in rows of P one-by-one, until you get a filled Latin square!

Determining what kinds of partial Latin squares have completions is an open question
in many situations! Here are some known results:

• (Hall, 1949:) A Latin rectangle is a partial Latin square P where the first k rows
of P are filled and the rest are blank. All Latin rectangles can be completed.

• (Smetaniuk, 1981:) If P is a partial latin square with ≤ n − 1 filled cells, P can be
completed.

• (Buchanan, 2007:) If P is a n × n partial Latin square where precisely 2 rows and
columns of P are filled, P can be completed.

A question I spent part of my dissertation studying is the following: Call a n×n partial
Latin square ε-sparse if at most εn of the entries in any row, column, or symbol are not
blank. It is conjectured that all 1/4-sparse partial Latin squares are completable; in my
dissertation I proved that all 10−4-sparse partial Latin squares are completable.

Somewhat frustratingly, 10−4 is not 1/4. If you can improve this, I’d love to see it!
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