Homework 5: Möbius Inversion

Due Friday, Week 7
UCSB 2015

In this HW set, there are two sections: a noncollaboration section and a collaboration section. For the noncollaboration section, use only your notes/class notes, and don't work with others. For the collaboration section, work as normal!

1 Non-Collaboration Section

Do the one problem below!

1. Let P be a finite poset, and $f \in \mathbb{A}(P)$ be a function in the incidence algebra of P. Prove that the following properties are all equivalent:
(i.) For any $x \in P$, we have $f(x, x)=1$, and for any $x<y \in P$, we have

$$
\sum_{z: x \leq z \leq y} f(z, y)=0
$$

(ii.) For any $x \in P$, we have $f(x, x)=1$, and for any $x<y \in P$, we have

$$
\sum_{z: x \leq z \leq y} f(x, z)=0
$$

(iii.) For any $x \in P$, we have $f(x, x)=1$, and for any $x<y \in P$, we have

$$
\sum_{z: x<z \leq y} f(z, y)=-f(x, y) .
$$

(iv.) For any $x \in P$, we have $f(x, x)=1$, and for any $x<y \in P$, we have

$$
\sum_{z: x \leq z<y} f(x, z)=-f(x, y) .
$$

(v.) f is μ, the Möbius function on P.

2 Collaboration Section

Do two of the four problems below!

1. Take any two finite posets P, Q. We can define the direct product $P \times Q$ of P and Q as the following partially ordered set:

- The elements of $P \times Q$ is the set $\{(p, q) \mid p \in P, q \in Q\}$.
- Given any two elements $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P \times Q$, we say that $\left(p_{1}, q_{1}\right)<\left(p_{2}, q_{2}\right)$ if and only if $p_{1} \leq p_{2}$ and $q_{1} \leq q_{2}$, with $\left(p_{1}, q_{1}\right) \neq\left(p_{2}, q_{2}\right)$.

Let μ_{P} be the Möbius function of P, μ_{Q} be the Möbius function of Q, and $\mu_{P \times Q}$ be the Möbius function of $P \times Q$. Prove that for any $a, b \in P, c, d \in Q$, we have

$$
\mu_{P \times Q}((a, c),(b, d))=\mu_{P}(a, b) \cdot \mu_{Q}(c, d) .
$$

(Hint: try using some of the equivalent characterizations of the Möbius function that you've proven in the non-collab section!)
2. Consider the poset P visualized as follows:

If you prefer symbols to pictures, P is simply a poset on the set $\{1,2,3, \ldots n\} \cup$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots n^{\prime}\right\} \cup\{0\}$. The relation $<$ on P is defined as follows: for any x, y in our set, we can say that $x<y$ in our set precisely whenever $x<y$ as a pair of natural numbers (i.e. $2<3^{\prime}, 4^{\prime}<16,3<5,7<12$ are all true in our poset!)
Find a closed form for the Möbius function μ of this poset P.
3. In our inclusion-exclusion lectures from week 4, we defined the Euler φ-function as follows:

$$
\varphi(n)=\text { the number of integers in }\{1, \ldots n\} \text { that are relatively prime to } n .
$$

(a) Show that for any $n \in \mathbb{N}$,

$$
n=\sum_{d \in \mathbb{N}: d \mid n} \varphi(d) .
$$

(b) Use Möbius inversion on the above to prove that for any $n \in \mathbb{N}$,

$$
\frac{\varphi(n)}{n}=\sum_{d \in \mathbb{N}: d \mid n} \frac{\mu(1, d)}{d}
$$

4. Prove the following "multiplicative" version of the Möbius inversion theorem: suppose that P is a finite poset with a unique minimal element 0 . Let f be any function from P to \mathbb{R}^{+}; using f, create the function $g: P \rightarrow \mathbb{R}^{+}$by setting

$$
g(a)=\prod_{x \leq a} f(x)
$$

Prove that

$$
f(a)=\prod_{x \leq a}(g(x))^{\mu(x, a)} .
$$

