Math 116

Professor: Padraic Bartlett

Homework 5: Möbius Inversion

Due Friday, Week 7

UCSB 2015

In this HW set, there are **two** sections: a **noncollaboration** section and a **collaboration** section. For the noncollaboration section, use only your notes/class notes, and don't work with others. For the collaboration section, work as normal!

1 Non-Collaboration Section

Do the one problem below!

- 1. Let P be a finite poset, and $f \in \mathbb{A}(P)$ be a function in the incidence algebra of P. Prove that the following properties are all equivalent:
 - (i.) For any $x \in P$, we have f(x, x) = 1, and for any $x < y \in P$, we have

$$\sum_{z:x\leq z\leq y}f(z,y)=0.$$

(ii.) For any $x \in P$, we have f(x, x) = 1, and for any $x < y \in P$, we have

$$\sum_{z:x \le z \le y} f(x,z) = 0.$$

(iii.) For any $x \in P$, we have f(x, x) = 1, and for any $x < y \in P$, we have

$$\sum_{z:x < z \le y} f(z, y) = -f(x, y).$$

(iv.) For any $x \in P$, we have f(x, x) = 1, and for any $x < y \in P$, we have

$$\sum_{z:x \le z < y} f(x, z) = -f(x, y).$$

(v.) f is μ , the Möbius function on P.

2 Collaboration Section

Do **two** of the four problems below!

- 1. Take any two finite posets P, Q. We can define the **direct product** $P \times Q$ of P and Q as the following partially ordered set:
 - The elements of $P \times Q$ is the set $\{(p,q) \mid p \in P, q \in Q\}$.
 - Given any two elements $(p_1, q_1), (p_2, q_2) \in P \times Q$, we say that $(p_1, q_1) < (p_2, q_2)$ if and only if $p_1 \leq p_2$ and $q_1 \leq q_2$, with $(p_1, q_1) \neq (p_2, q_2)$.

Let μ_P be the Möbius function of P, μ_Q be the Möbius function of Q, and $\mu_{P\times Q}$ be the Möbius function of $P \times Q$. Prove that for any $a, b \in P, c, d \in Q$, we have

$$\mu_{P\times Q}((a,c),(b,d)) = \mu_P(a,b) \cdot \mu_Q(c,d).$$

(Hint: try using some of the equivalent characterizations of the Möbius function that you've proven in the non-collab section!)

2. Consider the poset P visualized as follows:

If you prefer symbols to pictures, P is simply a poset on the set $\{1, 2, 3, \ldots n\} \cup \{1', 2', 3', \ldots n'\} \cup \{0\}$. The relation < on P is defined as follows: for any x, y in our set, we can say that x < y in our set precisely whenever x < y as a pair of natural numbers (i.e. 2 < 3', 4' < 16, 3 < 5, 7 < 12 are all true in our poset!)

Find a closed form for the Möbius function μ of this poset P.

3. In our inclusion-exclusion lectures from week 4, we defined the Euler φ -function as follows:

 $\varphi(n) =$ the number of integers in $\{1, \ldots n\}$ that are relatively prime to n.

(a) Show that for any $n \in \mathbb{N}$,

$$n = \sum_{d \in \mathbb{N}: d \mid n} \varphi(d)$$

(b) Use Möbius inversion on the above to prove that for any $n \in \mathbb{N}$,

$$\frac{\varphi(n)}{n} = \sum_{d \in \mathbb{N}: d \mid n} \frac{\mu(1, d)}{d}.$$

4. Prove the following "multiplicative" version of the Möbius inversion theorem: suppose that P is a finite poset with a unique minimal element 0. Let f be any function from P to \mathbb{R}^+ ; using f, create the function $g: P \to \mathbb{R}^+$ by setting

$$g(a) = \prod_{x \le a} f(x).$$

Prove that

$$f(a) = \prod_{x \le a} (g(x))^{\mu(x,a)}.$$