Math 116	Professor: Padraic Bartlett
Homework 4: Posets, Convolution, and Möbius Functions	
Due Friday, Week 6	UCSB 2015

In this HW set, there are two sections: a noncollaboration section and a collaboration section. For the noncollaboration section, use only your notes/class notes, and don't work with others. For the collaboration section, work as normal!

1 Non-Collaboration Section

Do the one problem below!

1. Take any finite poset $P=(X,<)$ on $|X|=n$ elements. An linear extension of P is any bijective map $f: P \rightarrow\{1,2, \ldots n\}$ such that if $x<y \in P$, then $f(x)<f(y)$.
Prove that any finite poset has a linear extension.

2 Collaboration Section

Do two of the four problems below!

1. Consider the convolution $f * g$, the convolution of any two functions $f, g \in \mathbb{A}(P)$:

$$
(f * g)(x, y)=\sum_{z: x \leq z \leq y} f(x, z) \cdot g(z, y) .
$$

(a) Prove that convolution is associative: that is, for any $f, g, h \in \mathbb{A}(P)$, prove that $f *(g * h)=(f * g) * h$.
(b) Is convolution commutative? That is: for any poset P and $f, g \in \mathbb{A}(P)$, can you prove that $f * g=g * f$? Or can you find a poset P and functions $f, g \in \mathbb{A}(P)$ such that $f * g \neq g * f$?
2. In class on Monday / in the notes online now, we proved the following theorem:

Theorem. Let P be any poset, and let r be any function $P \rightarrow \mathbb{R}$. Suppose that P has a unique minimal element: that is, there is some $m \in P$ such that for all $x \in P, m<x$. Define the function $s: P \rightarrow \mathbb{R}$ as follows: for any $a \in P$, set

$$
s(a)=\sum_{x \leq a} r(x) .
$$

Then we can "invert" the formula above: that is, for any $a \in P$, we have

$$
r(a)=\sum_{x \leq a} s(x) \mu(x, a)
$$

There is a "flipped" version of this theorem, where we assume our poset has a unique maximal element:

Theorem. Let P be any poset with a unique maximal element: that is, there is some $M \in P$ such that for all $x \in P, M>x$. Let r be any function $P \rightarrow \mathbb{R}$.
Define the function $s: P \rightarrow \mathbb{R}$ as follows: for any $a \in P$, set

$$
s(a)=\sum_{x \geq a} r(x) .
$$

Then we can "invert" the formula above: that is, for any $a \in P$, we have

$$
r(a)=\sum_{x \geq a} s(x) \mu(a, x) .
$$

Prove this theorem!
3. Given a poset P, a chain in P is any subset $C \subseteq P$ such that any two elements in C are comparable: that is, for any $x, y \in C$, we either have $x<y, x=y$ or $x>y$.
Take any finite poset P. Let δ be the Kronecker delta function and ζ be the zeta function on P, as defined in class. For any $a, b \in P$, define the function η as follows:

$$
\eta(a, b)=\zeta(a, b)-\delta(a, b) .
$$

Show that $\eta^{k}(a, b)$ is equal to the number of chains of length k whose smallest element is a and largest element is b. (The length of a chain is the number of elements past the first in the chain: that is, the length of the chain $x<y$ is 1 , the length of the chain $x<y<z$ is 2 , the length of the chain $x<y<z<w$ is $3 \ldots$)
4. Take any finite poset P on n elements, and any linear extension $l: P \rightarrow\{1, \ldots n\}$ of P. Use this linear extension to label the elements of P as $\left\{x_{1}, \ldots x_{n}\right\}$, where $l\left(x_{i}\right)=i$.
Given any map $f \in \mathbb{A}(P)$, define the $n \times n$ matrix A_{f} as follows:

$$
A_{f}(i, j)=f\left(x_{i}, x_{j}\right)
$$

Show that for any two maps $f, g \in \mathbb{A}(P)$,

$$
A_{f} \cdot A_{g}=A_{f * g} .
$$

(In other words: the definition of convolution we're using here actually comes from matrix multiplication!)

