
Math 116 Professor: Padraic Bartlett

Homework 4: Posets, Convolution, and Möbius Functions

Due Friday, Week 6 UCSB 2015

In this HW set, there are two sections: a noncollaboration section and a collabora-
tion section. For the noncollaboration section, use only your notes/class notes, and don’t
work with others. For the collaboration section, work as normal!

1 Non-Collaboration Section

Do the one problem below!

1. Take any finite poset P = (X,<) on |X| = n elements. An linear extension of P is
any bijective map f : P → {1, 2, . . . n} such that if x < y ∈ P, then f(x) < f(y).

Prove that any finite poset has a linear extension.

2 Collaboration Section

Do two of the four problems below!

1. Consider the convolution f ∗ g, the convolution of any two functions f, g ∈ A(P ):

(f ∗ g)(x, y) =
∑

z:x≤z≤y

f(x, z) · g(z, y).

(a) Prove that convolution is associative: that is, for any f, g, h ∈ A(P ), prove that
f ∗ (g ∗ h) = (f ∗ g) ∗ h.

(b) Is convolution commutative? That is: for any poset P and f, g ∈ A(P ), can
you prove that f ∗g = g∗f? Or can you find a poset P and functions f, g ∈ A(P )
such that f ∗ g 6= g ∗ f?

2. In class on Monday / in the notes online now, we proved the following theorem:

Theorem. Let P be any poset, and let r be any function P → R. Suppose that
P has a unique minimal element: that is, there is some m ∈ P such that for all
x ∈ P,m < x. Define the function s : P → R as follows: for any a ∈ P , set

s(a) =
∑
x≤a

r(x).

Then we can “invert” the formula above: that is, for any a ∈ P , we have

r(a) =
∑
x≤a

s(x)µ(x, a).
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There is a “flipped” version of this theorem, where we assume our poset has a unique
maximal element:

Theorem. Let P be any poset with a unique maximal element: that is, there is some
M ∈ P such that for all x ∈ P,M > x. Let r be any function P → R.

Define the function s : P → R as follows: for any a ∈ P , set

s(a) =
∑
x≥a

r(x).

Then we can “invert” the formula above: that is, for any a ∈ P , we have

r(a) =
∑
x≥a

s(x)µ(a, x).

Prove this theorem!

3. Given a poset P , a chain in P is any subset C ⊆ P such that any two elements in C
are comparable: that is, for any x, y ∈ C, we either have x < y, x = y or x > y.

Take any finite poset P . Let δ be the Kronecker delta function and ζ be the zeta
function on P , as defined in class. For any a, b ∈ P , define the function η as follows:

η(a, b) = ζ(a, b)− δ(a, b).

Show that ηk(a, b) is equal to the number of chains of length k whose smallest element
is a and largest element is b. (The length of a chain is the number of elements past
the first in the chain: that is, the length of the chain x < y is 1, the length of the
chain x < y < z is 2, the length of the chain x < y < z < w is 3. . . )

4. Take any finite poset P on n elements, and any linear extension l : P → {1, . . . n} of
P . Use this linear extension to label the elements of P as {x1, . . . xn}, where l(xi) = i.

Given any map f ∈ A(P ), define the n× n matrix Af as follows:

Af (i, j) = f(xi, xj).

Show that for any two maps f, g ∈ A(P ),

Af ·Ag = Af∗g.

(In other words: the definition of convolution we’re using here actually comes from
matrix multiplication!)
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