
Math 116 Professor: Padraic Bartlett

Homework 3: More Generating Functions

Due Friday, Week 4 UCSB 2015

In this HW set, there are five problems. Pick three of them to solve! If you solve more
than three, only your first three problems will be graded. Choose wisely.

1. For any n, let on denote the number of ways to write n as an unordered sum of odd
natural numbers: for example, o7 = 5, because

1 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 3, 1 + 3 + 3, 1 + 1 + 5, 7

are all of the ways to write 7 as a sum of odd natural numbers. Similarly, let dn denote
the number of ways to write n as an unordered sum of distinct natural numbers: for
example, d7 = 5, as

1 + 2 + 4, 1 + 6, 2 + 5, 3 + 4, 7

are all of the ways to write 7 as a sum of distinct natural numbers.

In the example above, o7 = d7 = 5. Prove that this wasn’t a coincidence: that is,
show that on = dn for every n ≥ 1.

2. This problem consists of a very strange way to answer the following problem: in the
expression (

√
2 +
√

3)2014, can you determine the first few digits after the decimal
place without using a calculator?

(a) First, show that for any n, there are integers an, bn such that (
√

2 +
√

3)2n =
an + bn

√
6.

(b) Now, show that the sequences an, bn satisfy the recurrence relations

an = 5an−1 + 12bn−1,

bn = 2an−1 + 5bn−1.

(c) If A(x) denotes the generating function for the {an}∞n=0 sequence, find a closed
form for A(x). Use this to prove that an has the closed form

an =
1

2

(
(5 + 2

√
6)n + (5− 2

√
6)n
)
.

(d) Using the above plus our knowledge that an+bn
√

6 = (
√

2+
√

3)2n = (5+2
√

6)n,
prove that

an = bn
√

6 + (5− 2
√

6)n.

Use this fact to find the first (say) three digits after the decimal place for (
√

2 +√
3)2014 without using a calculator.
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=video&cd=1&ved=0CB4QtwIwAA&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUbw5N8iVDHI&ei=jM4xVdCcN4q1oQTVw4GwBA&usg=AFQjCNE8omPCQ8xtqWtF21xDxED0eN226w&sig2=60I8Ja4TKTax-GaRn38e6w


3. The Stirling numbers of the second kind are defined as follows: for any nat-
ural numbers n, k, let

{
n
k

}
denote the number of ways to write the set {1, 2, . . . n}

as the union of k disjoint nonempty subsets. For instance,
{
3
2

}
= 3, as there are

precisely three ways to write {1, 2, 3} as a union of two disjoint nonempty sets:
{1, 2} ∪ {3}, {1, 3} ∪ {2}, {2, 3} ∪ {1}.
We can use the sieve method to find a very nice formula for these numbers, as follows.
Take n labeled balls and consider the process of placing these balls into k labeled
boxes. Let Ω denote the kn many ways of placing these balls into boxes. Finally, for
any 1 ≤ i ≤ k, let pi denote the property that box i is empty, and let P = {p1, . . . pk}
be the collection of all of these properties.

(a) Prove that k! ·
{
n
k

}
is just the number of elements of Ω that satisfy no properties.

(b) If S is any subset of our properties and A(S) denotes the number of elements of
Ω that satisfy all of the properties in S (and maybe more), show that A(S) =
(k − |S|)n.

(c) In class, we defined nr =
∑

S⊆P :|S|=r A(S). Use (b) to find a formula for nr in
terms of k, n, r

(d) Use the N(x − 1) = E(x) trick to prove the following formula for the Stirling
numbers:

∞∑
r=0

(
k

r

)
(k − r)n(−1)r = k! ·

{
n

k

}
.

4. In class, we proved that if A(x) =
∑∞

n=0 anx
n was a generating function such that

A(x) = 1
(1−x)2 , then an = n + 1 for every n.

On the third quiz, we looked at a generating function B(x) =
∑∞

n=0 bnx
n such that

B(x) = 1
(1−x)3 . If you successfully completed this quiz problem, then you likely proved

that bn = (n+1)(n+2)
2 =

(
n+2
2

)
for all n.

Generalize this as follows: for any natural number k, let C(x) =
∑∞

n=0 cnx
n be a

generating function such that C(x) = 1
(1−x)k . Prove that cn =

(
n+k−1
k−1

)
for all n.

5. We close with one last example of the sieve method. For any natural number n, let Ω
denote the collection of all subsets of size n from {1, 2, . . . 2n}. For any 1 ≤ i ≤ n, let
pi denote the property that one of these given subsets does not contain the number
i, and let P = {p1, . . . pn} denote the collection of these n properties. (Notice that
our properties are only concerned with whether our subsets contain elements from
{1, . . . n}, and don’t care about the other {n + 1, . . . 2n} elements.)

(a) Show that A(S) is
(
2n−|S|

n

)
.

(b) Show that nr =
(
n
r

)(
2n−r
n

)
.

(c) Finally, use the sieve method to show that for any n, we have the identity

1 =
∞∑
r=0

(
n

r

)(
2n− r

n

)
(−1)r.
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