Math 116	Professor: Padraic Bartlett	
	Homework 3: More Generating Functions	
Due Friday, Week 4		

In this HW set, there are five problems. Pick three of them to solve! If you solve more than three, only your first three problems will be graded. Choose wisely.

1. For any n, let o_{n} denote the number of ways to write n as an unordered sum of odd natural numbers: for example, $o_{7}=5$, because

$$
1+1+1+1+1+1+1,1+1+1+1+3,1+3+3,1+1+5,7
$$

are all of the ways to write 7 as a sum of odd natural numbers. Similarly, let d_{n} denote the number of ways to write n as an unordered sum of distinct natural numbers: for example, $d_{7}=5$, as

$$
1+2+4,1+6,2+5,3+4,7
$$

are all of the ways to write 7 as a sum of distinct natural numbers.
In the example above, $o_{7}=d_{7}=5$. Prove that this wasn't a coincidence: that is, show that $o_{n}=d_{n}$ for every $n \geq 1$.
2. This problem consists of a very strange way to answer the following problem: in the expression $(\sqrt{2}+\sqrt{3})^{2014}$, can you determine the first few digits after the decimal place without using a calculator?
(a) First, show that for any n, there are integers a_{n}, b_{n} such that $(\sqrt{2}+\sqrt{3})^{2 n}=$ $a_{n}+b_{n} \sqrt{6}$.
(b) Now, show that the sequences a_{n}, b_{n} satisfy the recurrence relations

$$
\begin{aligned}
& a_{n}=5 a_{n-1}+12 b_{n-1}, \\
& b_{n}=2 a_{n-1}+5 b_{n-1} .
\end{aligned}
$$

(c) If $A(x)$ denotes the generating function for the $\left\{a_{n}\right\}_{n=0}^{\infty}$ sequence, find a closed form for $A(x)$. Use this to prove that a_{n} has the closed form

$$
a_{n}=\frac{1}{2}\left((5+2 \sqrt{6})^{n}+(5-2 \sqrt{6})^{n}\right) .
$$

(d) Using the above plus our knowledge that $a_{n}+b_{n} \sqrt{6}=(\sqrt{2}+\sqrt{3})^{2 n}=(5+2 \sqrt{6})^{n}$, prove that

$$
a_{n}=b_{n} \sqrt{6}+(5-2 \sqrt{6})^{n} .
$$

Use this fact to find the first (say) three digits after the decimal place for $(\sqrt{2}+$ $\sqrt{3})^{2014}$ without using a calculator.
3. The Stirling numbers of the second kind are defined as follows: for any natural numbers n, k, let $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ denote the number of ways to write the set $\{1,2, \ldots n\}$ as the union of k disjoint nonempty subsets. For instance, $\left\{\begin{array}{l}3 \\ 2\end{array}\right\}=3$, as there are precisely three ways to write $\{1,2,3\}$ as a union of two disjoint nonempty sets: $\{1,2\} \cup\{3\},\{1,3\} \cup\{2\},\{2,3\} \cup\{1\}$.
We can use the sieve method to find a very nice formula for these numbers, as follows. Take n labeled balls and consider the process of placing these balls into k labeled boxes. Let Ω denote the k^{n} many ways of placing these balls into boxes. Finally, for any $1 \leq i \leq k$, let p_{i} denote the property that box i is empty, and let $P=\left\{p_{1}, \ldots p_{k}\right\}$ be the collection of all of these properties.
(a) Prove that $k!\cdot\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is just the number of elements of Ω that satisfy no properties.
(b) If S is any subset of our properties and $A(S)$ denotes the number of elements of Ω that satisfy all of the properties in S (and maybe more), show that $A(S)=$ $(k-|S|)^{n}$.
(c) In class, we defined $n_{r}=\sum_{S \subseteq P:|S|=r} A(S)$. Use (b) to find a formula for n_{r} in terms of k, n, r
(d) Use the $N(x-1)=E(x)$ trick to prove the following formula for the Stirling numbers:

$$
\sum_{r=0}^{\infty}\binom{k}{r}(k-r)^{n}(-1)^{r}=k!\cdot\left\{\begin{array}{l}
n \\
k
\end{array}\right\} .
$$

4. In class, we proved that if $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ was a generating function such that $A(x)=\frac{1}{(1-x)^{2}}$, then $a_{n}=n+1$ for every n.
On the third quiz, we looked at a generating function $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ such that $B(x)=\frac{1}{(1-x)^{3}}$. If you successfully completed this quiz problem, then you likely proved that $b_{n}=\frac{(n+1)(n+2)}{2}=\binom{n+2}{2}$ for all n.
Generalize this as follows: for any natural number k, let $C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ be a generating function such that $C(x)=\frac{1}{(1-x)^{k}}$. Prove that $c_{n}=\binom{n+k-1}{k-1}$ for all n.
5. We close with one last example of the sieve method. For any natural number n, let Ω denote the collection of all subsets of size n from $\{1,2, \ldots 2 n\}$. For any $1 \leq i \leq n$, let p_{i} denote the property that one of these given subsets does not contain the number i, and let $P=\left\{p_{1}, \ldots p_{n}\right\}$ denote the collection of these n properties. (Notice that our properties are only concerned with whether our subsets contain elements from $\{1, \ldots n\}$, and don't care about the other $\{n+1, \ldots 2 n\}$ elements.)
(a) Show that $A(S)$ is $\binom{2 n-|S|}{n}$.
(b) Show that $n_{r}=\binom{n}{r}\binom{2 n-r}{n}$.
(c) Finally, use the sieve method to show that for any n, we have the identity

$$
1=\sum_{r=0}^{\infty}\binom{n}{r}\binom{2 n-r}{n}(-1)^{r} .
$$

