
Math 116 Professor: Padraic Bartlett

Final!

Due Wednesday, 6pm, to my office (SH 6516.) UCSB 2015

This final has three sections!

1. Non-Collaboration Section (33%.) This section contains four quiz-styled prob-
lems, of which you will pick two. If you attempt more than two, only your first two
problems will be graded. You are allowed to use your notes from class and the online
class notes in this section; however, other resources (e.g. the internet, Mathematica,
classmates) are off-limits. You get four hours to complete this section!

2. Collaboration Section (67%.) This section contains four homework-styled prob-
lems, of which you will pick two. If you attempt more than two, only your first two
problems will be graded. You are allowed to use your notes from class, online class
notes, Wikipedia, textbooks, Mathematica/Wolfram Alpha/etc, and can also collab-
orate with other people in the class. As with the HW, you must cite all of your
collaborators, and prove any results that you want to use that haven’t been proven in
class. Also, all proofs/writeups/etc must be done in your own words. You get eight
hours to complete this section!

3. Extra-Credit Section (+10%.) This section contains a single extra credit problem,
worth up to 10% extra on your final exam grade! It has no time limit. With that
said, focus on the first two sections first; they’re worth much more for your grade!

The way time limits work is via the honor system, and as follows:

• On the second page of this final, you can find a table for logging start/stop times on
your work.

• When you start work, write down when you start the problem.

• When you stop — i.e., to take a break, or go to sleep, or go for a run — write down
when you stop.

• Work is somewhat subjective, but can be broadly construed as “thinking about and/or
working on the problems.” As long as you are being fairly reasonable and ethical here,
you are likely doing the right thing!

You can send in questions by email or ask them at office hours; I will be a bit more
cryptic than normal, but will still be helpful! Over finals week, I will run extended office
hours to help with questions: there will be OH on Monday and Tuesday from 12-3pm.

Good luck and have fun!
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Non-Collaboration Section Timesheet
Time started Time stopped

Collaboration Section Timesheet
Time started Time stopped
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1 Non-Collaboration Section

Do two of the four problems in this section! All problems are on their own page.

1. Triphenylphosphine is a molecule made out of 18 carbons ( ), 15 hydrogens ( ), and
one phosphorous molecule ( ), as drawn below:

Suppose that you are interested in studying all of the possible molecules that can
arise after some of the hydrogen molecules above are replaced with bromine molecules
( ). We consider two of these triphenylphosphine+bromine molecules to be the same
if one can be transformed into the other by some combination of the following three
operations:

• Rotating the whole molecule around its center.

• Reflecting the whole molecule over some axis.

• Reflecting any one of the three carbon hexagons over the carbon-phosphorous
bond.

=

=

flipping
one carbon
hexagon

=
flipping

the entire 
molecule

rotating
120°

counter-
clockwise

How many different molecules are there in total?
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2. A poset 〈P,<〉 is called self-dual if there is a bijection f : P → P such that for any
x, y ∈ P , we have f(x) ≥ f(y) if and only if x ≤ y.

(a) Show that the divisor poset is self-dual.

(b) Show that the Boolean lattice is self-dual.

(c) Find a poset that is not self-dual.

(d) Find a lattice that is not self-dual.
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3. Take the collection of all 4× 4 Latin squares on the symbol set {1, 2, 3, 4}. There are
576 many such squares, as given in the notes.

Suppose that we consider two Latin squares to be equivalent if one can be rotated or
flipped in such a way that it becomes another. So, for example, we would think that

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

,

4 3 2 1

1 4 3 2

2 1 4 3

3 2 1 4

,

3 2 1 4

2 1 4 3

1 4 3 2

4 3 2 1

are all equivalent, amongst others, as we can rotate the first by 90◦ clockwise to get
the second, and flip the second over its horizontal axis to get the third.

How many 4× 4 Latin squares are distinct under this notion of equivalence?
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4. Consider the collection Pn of all partial n × n Latin squares. So, for example, P2 is
the following set:

P2 =

{
1 2

2 1
,

2

2 1
,

1

2 1
,

1 2

1
,

1 2

2
,

2 1
,

2

1
,

2

2
,

1

1
,

1

2
,

1 2
,

1
,

2
,

2
,

1
, ,

2 1

1 2
,

1

1 2
,

2

1 2
,

2 1

2
,

2 1

1
,

1 2
,

1

2
,

1

1
,

2

2
,

2

1
,

2 1
,

2
,

1
,

1
,

2
,

}
.

Consider the following relation < that we can define on Pn: for any two partial n×n
Latin squares P,Q ∈ Pn, define P < Q if and only if P 6= Q and every filled cell of P is

a filled cell of Q, containing the same values. So, for example, we have
2

2
<

1 2

2
because every filled cell on the left-hand side is filled in on the right with the same

values. However,
2

2
6<

2 1
because the left-hand side has cells filled in that are

blank on the right, and
2

2
6< 1

1 2
because the filled cells on the left disagree

with the filled cells at the right.

(a) Prove that 〈P, <〉 is a poset.

(b) Suppose that P,Q ∈ P are two n× n partial Latin squares such that P contains
k filled cells, Q contains l filled cells, and P < Q. Find a closed formula for
µ(P,Q), the Möbius function on this poset, that depends only on k and l.
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2 Collaboration Section

Do two of the four problems in this section! All problems are on their own page.

1. Recall that a partition of the set {1, . . . n} is any way to write this set as the
union of disjoint subsets of {1, . . . n}. So, for example, one partition of {1, 2, 3, 4} is
{1, 2}, {3}, {4}; another partition is {1}, {2, 3, 4}, and a third partition is {1, 2, 3, 4}.
Take n ∈ N, and consider the set Πn consisting of all possible partitions of {1, . . . n}.
So, for example,

Π3 =

{{
{1, 2, 3}

}
,
{
{1, 2}, {3}

}
,
{
{1, 3}, {2}

}
,
{
{2, 3}, {1}

}
,
{
{1}, {2}{3}

}}

Define the relation < on this set as follows: for any two partitions α, β ∈ Πn, we
have α < β if and only if α 6= β and every subset in β can be written as the union

of some blocks in α. So, for example,
{
{1, 2}, {3}, {4}

}
<
{
{1, 2}, {3, 4}

}
, as we can

write each set on the right as a union of sets on the left. As well,
{
{1, 2}, {3, 4}

}
6<{

{1, 4}, {2, 3}
}

, because we cannot write {1, 4} on the left as the union of any of the

sets in {{1, 2}, {3, 4}
}

.

(a) Show that this is a poset.

(b) Show that this is a lattice.

(c) Show that for any α ∈ Πn, we have{
{1}, {2}, . . . {n}

}
≤ α ≤

{
{1, 2, . . . n}

}
.

(In this sense our poset has a unique biggest element and unique smallest ele-

ment. Name the minimal element
{
{1}, {2}, . . . {n}

}
= 0̂ and similarly name{

{1, 2, . . . n}
}

= 1̂ for shorthand.)

(d) Let µ be the Möbius function on this lattice. Prove that

µ(0̂, 1̂) = (−1)n−1(n− 1)!.

(Hint: try using HW6, problem 2, on some easy-to-work-with value of a.)
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2. In class, I said that finding the exact number of distinct n×n Latin squares is an open
problem. However, you can get some pretty good lower bounds! We do this here.

(a) Suppose that A = {A1, . . . An} is a collection of subsets of {1, . . . n} such that
the following holds: there is some natural number k such that

• |Ai| = k for every i.

• For any x ∈ {1, . . . n}, x is in exactly k of the sets Ai.

Prove that there are at least k! different systems of distinct representatives for
the sets Ai. (Hint: induction!)

(b) Use (a) to prove the following claim: if L(n) denotes the number of distinct n×n
Latin squares, show that

L(n) > n! · (n− 1)! · . . . · 2! · 1!.
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3. For every n ∈ N, consider the following poset Pn:

• Elements: P consists of the following elements:

P = {0̂, 1̂} ∪ {a1, a2, . . . an} ∪ {b1, b2, . . . bn}.

• Ordering: 0̂ ≤ x for any x ∈ P ; as well, 1̂ ≥ x for any x ∈ P . For the other
elements, we make the following definitions:

– ai < aj if and only if i < j.

– bi < bj if and only if i < j.

– ai < bj if and only if i < j.

In particular, notice that bj 6< ai for any ai, bj .

To give a concrete example, we draw P3’s diagram here:

0̂

a1

a2

a3

b1

b2

b3

1̂

Find a nice closed form, dependent only on n, for the number of linear extensions1 of
Pn.

1From HW4: a linear extension of a finite poset P on n elements is a bijective map f : P → {1, 2, . . . n},
such that if x < y ∈ P, then f(x) < f(y).
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4. Take an arbitrary finite group 〈G, ·〉 containing n elements, and let e denote the
identity element in this group. For any number m ∈ N, let X denote the collection of
all ordered m-tuples of elements (g0, g1, . . . gm−1) such that g0 · g1 · . . . gm−1 = e.

For example, let G = D6 = {e, r120, r240, f , f , f }, the dihedral group given by

the symmetries of a triangle, and let m = 2. Then X is the following set:

X =
{

(e, e), (r120, r240), (r240, r120), (f , f ), (f , f ), (f , f ),
}
.

(a) How many elements are in X? You should find an expression for the size of X
that depends only on n and m.

(b) Let Z/mZ act on X as follows: for any k ∈ Z/mZ, define

k ? (g0, . . . gm−1) = (g0+k mod m, g1+k mod m, . . . g(m−1)+k mod m).

Show2 that this is a group action.

(c) By using the above group action, prove the following claim: if G is a group of
order n and p is a prime that divides n, then there is some g ∈ G, g 6= e, with
gp = e.

2Be aware that G may not be a commutative group; i.e. in general, g · h 6= h · g. This makes your proof
a little (but not much) trickier than it may seem at first.
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3 Extra-Credit Section

1. Take any n ∈ N, and form the Boolean lattice Bn made out of all of the subsets
of {1, . . . n} ordered by inclusion, as described in the notes. Consider the following
two-player game that we can play on Bn:

• There are two players, player 1 and player 2. Player 1 goes first, and the players
alternate turns until the game is done.

• On a player’s turn, they pick out an element on the lattice and delete it, along
with every element “beneath” that element (i.e. if a player picks out x, they
delete x and every y < x from our lattice.)

• The game ends when someone takes the “top” element {1, . . . n} in our lattice;
the person who does this loses the game.

For example, when n = 2, player 1 can always win with perfect play. On the poset

{1, 2}

{1} {2}

∅

player 1 can always open by taking ∅. Player 2 can then either respond by taking
{1, 2} and thus losing (as this removes all of the entries in the lattice) or either of
{1}, {2}. In the latter case, player 1 can just take whichever single-element set player
2 did not take, which leaves player 2 with no choice but to take {1, 2} and lose.

(a) Play me in this game, either in office hours or via email, on B4:

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

{1} {2} {3} {4}

∅

You can decide to go first or second. You get credit for this problem if and only
if you win. Only one attempt per person.

(b) In general: can player 1 win with perfect play in this game for any n? Or is there
some n such that player 2 can win with perfect play?
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