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Lecture 8: A Crash Course in Linear Algebra

Week 9 UCSB 2014

Qué sed
de saber cuánto!

Pablo Neruda, Oda a los Números

1 Linear Algebra

In the past week, we studied the concept of constructible numbers, and asked whether
numbers like π, 3

√
2 or cos(20◦) are constructible! In this week’s lectures, we will prove that

they are not constructible; to do this, though, we need some linear algebra machinery! In
these notes we go through the concepts of vector spaces, span, basis and dimension,
which are the linear algebra concepts we need for our later work.

1.1 Vector spaces, informally.

The two vector spaces you’re probably the most used to working with, from either your
previous linear algebra classes or even your earliest geometry/precalc classes, are the spaces
R2 and R3. We briefly restate how these two vector spaces work here:

Definition. The vector space R2 consists of the collection of all pairs (a, b), where a, b are
allowed to be any pair of real numbers. For example, (2,−3), (2, π), (−1, 1), and (

√
2,
√

2)
are all examples of vectors in R2. We typically visualize these vectors as arrows in the
xy-plane, with the tail of the arrow starting at the origin1 and the tip of the arrow drawn at
the point in the plane with xy-coördinates given by the vector. We draw four such vectors
here:

x

y

(2,-3)

(2,π)

(-1,1) (√2,	√2)

1The origin is the point (0, 0) in the plane.
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Given a pair of vectors in R2, we can add them together. We do this component-wise,
i.e. if we have two vectors (a, b) and (c, d), their sum is the vector (a+c, b+d). For example,
the sum of the vectors (3,−2) and (2, 3) is the vector (5, 1).

You can visualize this by taking the arrow corresponding to the first vector that we add,
and “translating” this arrow over to the start of the second vector; if you travel along the
first vector and then continue along this second translated vector, you arrive at some point
in the plane. The arrow connecting the origin to this point is the vector given by the sum
of these two vectors! If this seems hard to understand, the diagram below may help some:

x

y

(3-2)

(2,3)

(2,3)+(3,-2)	=	(5,1)

We can also scale a vector in R2 by any real number a. Intuitively, this corresponds to
the concept of “stretching:” the vector (x, y) scaled by a, denoted a(x, y), is the quantity
(ax, ay). For example, 2(1, 3) = (2, 6), and is essentially what happens if we “double” the
vector (1, 3). We illustrate this below:

x

y

(1,3)

2(1,3)	=	(2,6)

We can define R3 in a similar fashion:
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Definition. The vector space R3 consists of the collection of all pairs (a, b, c), where a, b, c
are allowed to be any triple of real numbers. For example, (0, 1, 2), (3, 0, 2), and (3, 2, 0)
are all examples of vectors in R3. We typically visualize these vectors as arrows in three-
dimensional xyz-space, with the tail of the arrow starting at the origin and the tip of the
arrow drawn at the point in the plane with xyz-coördinates given by the vector. We draw
three such vectors here:

x y

z

(0,1,2)

(3,0,2)

(3,2,0)

Again, given a pair of vectors in R3, we can add them together. We do this component-
wise, i.e. if we have two vectors (a, b, c) and (d, e, f), their sum is the vector (a+d, b+e, c+f).
For example, the sum of the vectors (3,−2, 0) and (2, 1, 2) is the vector (5,−1, 2). We can
also scale a vector in R3 by any real number a: the vector (x, y, z) scaled by a, denoted
a(x, y, z), is the quantity (ax, ay, az). These operations can be visualized in a similar fashion
to the pictures we drew for R2:

x y

z

(-3,0,1)+(3,2,0)	

(-3,0,1)

(3,2,0)

=	(0,2,1)

=(4,0,2) (2,0,1)
2(2,0,1)	
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You can generalize this discussion to Rn, the vector space made out of n-tuples of real
numbers: i.e. elements of R4 would be things like (π, 2, 2, 1) or (−1, 2, 1,−1).

1.2 Vector spaces, formally.

In general, there are many other kinds of vector spaces — essentially, anything with the
two operations “addition” and “scaling” is a vector space, provided that those operations
are well-behaved in certain specific ways. Much like we did with R and the field axioms, we
can generate a list of “properties” for a vector space that seem like characteristics that will
insure this “well-behaved” nature. We list a collection of such properties and use them to
define a vector space here:

Definition. A vector space V over a field F is a set V along with the two operations
addition and scalar multiplication, such that the following properties hold:

• Closure(+): ∀~v, ~w ∈ V, we have v +
w ∈ V .

• Identity(+): ∃~0 ∈ V such that ∀~v ∈
V , ~0 + ~v = ~v.

• Commutativity(+): ∀~v, ~w ∈ V,~v +
~w = ~w + ~v.

• Associativity(+): ∀~u,~v, ~w ∈ V, (~u +
~v) + ~w = ~u+ (~v + ~w).

• Inverses(+): ∀~v ∈ V,∃ some − ~v ∈
V such that ~v + (−~v) = 0.

• Closure(·): ∀a ∈ F,~v ∈ V, we have
a~v ∈ V .

• Identity(·): ∀~v ∈ V , we have 1~v = ~v.

• Compatibility(·): ∀a, b ∈ F , we have
a(b~v) = (a · b)~v.

• Distributivity(+, ·): This means two
things! On one hand, ∀a ∈ F,~v, ~w ∈ V,
we have a (~v + ~w) = a~v + a~w.

On the other, ∀a, b ∈ F,~v ∈ V , we have
(a+ b)~v = a~v + b~v.

As with fields, there are certainly properties that vector spaces satisfy that are not listed
above. For example, consider the following property:

• New property?(+): The additive identity, ~0, is unique in any vector space. In other
words, there cannot be two distinct vectors that are both the additive identity for a
given vector space.

Just like before, this property turns out to be redundant: in other words, this property
is implied by the definition of a vector space! We prove this here:

Claim. In any vector space, the additive identity is unique.

Proof. Take any two elements ~0, ~0′ that are both additive identities. Then, by definition,
we know that because ~0 is an additive identity, we have

~0′ = ~0 + ~0′.

Similarly, because ~0′ is an additive identity, we have

~0 = ~0′ +~0.
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If we use commutativity to switch the ~0 and ~0′, we can combine these two equalities to get
that

~0 = ~0′ +~0 = ~0 + ~0′ = ~0′.

Therefore, we have shown that ~0 and ~0′ are equal. In other words, we’ve shown that all
of the elements that are additive identities are all equal: i.e. that they’re all the same
element! Therefore, this additive identity element is unique: there is no other element
that is somehow an additive identity that is different from ~0.

As we did with fields, there are a number of other properties that Rn possesses that you
can prove that any vector space must have: in your textbook, there are proofs that every
vector has a unique additive inverse, that 0~v is always ~0, that −1~v = −~v, and other such
things.

Instead of focusing on more of these proofs, we shift our attention instead to actually
describing some vector spaces!

1.3 Examples of vector spaces.

A few of these are relatively simple to come up with:

• Rn, the example we used to come up with these properties, is a vector space over the
field R.

• Cn is similar. Specifically: Cn is the set of all n-tuples of complex numbers: i.e.

Cn = {(z1, . . . zn)|z1, . . . zn ∈ C}.

Just like with Rn, we can add these vectors together and scale them by arbitrary
complex numbers, while satisfying all of the vector space properties. We leave the
details for the reader to check, but this is a vector space over the complex numbers
C.

• Similarly, Qn, the set of all n-tuples of rational numbers

Qn = {(q1, . . . qn)|q1, . . . qn ∈ Q},

is a vector space over the field Q.

• In general, given any field F , we can form the vector space Fn by taking our set to be

Fn = {(f1, . . . fn)|f1, . . . fn ∈ F}.

We can add these vectors pairwise: i.e. for any ~f = (f1, . . . fn), ~g = (g1, . . . gn) ∈ Fn,
we can form

(f1, f2, . . . fn) + (g1, g2, . . . gn) = (f1 + g1, f2 + g2 + . . . fn + gn).

We can also scale them: for any ~f ∈ Fn, a ∈ F , we can form the vector

a(f1, f2, . . . fn) = (a · f1, a · f2, . . . a · fn).

It is not hard to check that because F is a field, Fn is forced to satisfy all of the vector
space axioms:
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– Closure(+): Immediate. Because F is a field and is closed under addition, the
pairwise sums performed in vector addition must create another vector.

– Identity(+): Because F is a field, it has an additive identity, 0. The vector
~0 = (0, 0, . . . 0) is consequently the additive identity for our vector space, as
pairwise adding this vector to any other vector does not change any of the other
vector’s coördinates.

– Commutativity(+): Again, this is a consequence of F being a vector space.
Because addition is commutative in F , the pairwise addition in our vector space
is commutative.

– Associativity(+): Once more, this is a consequence of F being a vector space.
Because addition is associative in F , the pairwise addition in our vector space is
associative.

– Inverses(+): Take any ~f = (f1, . . . fn) ∈ Fn. Because F is a field, we know
that (−f1, . . .− fn) is a vector in Fn as well. Furthermore, the pairwise addition
of these two vectors clearly yields the additive identity ~0; therefore, our vector
space has inverses.

– Closure(·): This is a consequence of F being closed under multiplication.

– Identity(·): Because F is a field, it has a multiplicative identity 1. This 1, when
used to scale a vector, does not change that vector at any coördinate because of
this multiplicative identity property; therefore 1 is also the scalar multiplicative
identity for our vector space.

– Compatibility(·): This is an immediate consequence from F ’s multiplication
being associative, as for any a, b ∈ F , we have

a(b(f1 . . . fn) =a(b · f1, . . . b · fn) = (a · (b · f1), . . . a · (b · fn))

=(a · b) · f1, . . . (a · b) · fn) = (a · b)(f1, . . . fn).

– Distributivity(+, ·): This is a consequence of F being a vector space. Because
multiplication and addition are distributive in F , their combination in our vector
space is distributive as well.

• A specific consequence of the above result is that something like (Z/5Z)n is a vector
space. This is a somewhat strange-looking beast: it’s a vector space over a finite-sized
field! In particular, it’s a vector space with only finitely many elements, which is
weird.

To understand this better, we look at some examples. Consider (Z/5Z)2. This is the
vector space consisting of elements of the form

(a, b),

where a, b ∈ {0, 1, 2, 3, 4}. We add and scale elements in this vector space using mod-5
modular arithmetic: for example,

(2, 3) + (4, 4) = (1, 2),

6



because 2 + 4 ≡ 1 mod 5 and 3 + 4 ≡ 2 mod 5. Similarly,

2(3, 1) = (1, 2),

because 2 · 3 ≡ 1 mod 5 and 2 · 1 ≡ 2 mod 5.

Perhaps surprisingly, these odd-looking vector spaces are some of the most-commonly
used spaces in the theoretical computer science/cryptographic settings. In particular,
they come up very often in the field of elliptic curve cryptography, and are instru-
mental to how a number of modern cryptographic schemes work.

There are some odder examples of vector spaces:

• Polynomials! Specifically, let R[x] denote the collection of all finite-degree polynomials
in one variable x with real-valued coefficients. In other words,

R[x] = {a0 + a1x+ . . . anx
n|a0, . . . an ∈ R, n ∈ N}.

Verifying that this is a vector space is not very difficult — try it if you don’t believe
it!

• Matrices! Specifically, let MR(n, n) denote the set of n× n matrices with real-valued
entries. For example

MR(3, 3) =


a b c
d e f
g h i

 ∣∣∣∣∣∣ a, b, c, d, e, f, g, h, i ∈ R

 .

If we define matrix addition as simply entrywise addition: i.e.
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn

 =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

an1 + bn1 an2 + bn2 . . . ann + bnn

 ,
and scalar multiplcation as simply entrywise multiplication, i.e.

c


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 =


ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
...

. . .
...

can1 can2 . . . cann

 ,
then this is a vector space! Specifically, it’s a vector space for precisely the same
reasons that Rn is a vector space: if you just think of a n×n matrix as a very oddly-
written vector in Rn2

, then every argument for why Rn2
is a vector space carries over

to MR(n, n).

It might seem odd to think of matrices as a vector space, but if you go further in
physics or pure mathematics, this is an incredibly useful and common construction.

Two of the most important concepts when working with vector spaces are the ideas of
span and linear independence. We define these in the next subsection:
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1.4 Span and linear independence.

When we’re working with vectors in a vector space, there’s really only two operations we’ve
discussed that we can do: vector addition and scalar multiplication. A useful thing to think
about, then, is the collection of all sorts of objects that we can make using these operations!
We define these things here:

Definition. Let V be a vector space over some field F . A linear combination of some
set of vectors S is any sum of the form

a1 ~v1 + a2 ~v2 + . . . an ~vn,

where a1, . . . an are all elements of our field F , and ~v1, . . . ~vn ∈ S.

In other words, a linear combination of some set of vectors is anything we can make by
scaling and adding these vectors together.

A useful thing to study, given some set {~v1, . . . ~vn of vectors, is the following: what can we
make with these vectors? In other words, what is the collection of all linear combinations
of these vectors?

This question is sufficiently common that we have a term for its related concept: the
idea of span!

Definition. Given any nonempty collection of vectors A, the span of A, denoted span(A),
is the collection of all linear combinations of elements of A. In other words,

span(A) = {a1 ~v1 + a2 ~v2 + . . . an ~vn|n ∈ N, a1 . . . an ∈ R, ~v1, . . . ~vn ∈ A}.

Notice that the span of any nonempty set of vectors A ⊆ V is a vector space in its own
right. This is not hard to see: I leave the proof to the HW for interested students.

A genre of questions you’ll often encounter in a linear algebra class is “Given some set
A of vectors, what is their span? Is some other vector ~w contained within this span?”

We give an example of a calculation here:

Question. You have been hired as a deep-sea navigator. Your first task is to pilot a
submarine from our ship, anchored at (0, 0, 0) in the diagram below, to observe a whale
at (12, 6,−6). Your submarine has three engines on it. The first, when ran for a cycle,
moves the submarine (2, 1, 0) units from its current location. The second, when ran for a
cycle, moves the submarine (0, 2, 1) units from its current location. Finally, the third, when
ran for a cycle, moves the submarine (1, 0, 2) units from its current location. Submarine
engines can be fired for fractional units of time, and when ran in reverse moves the shuttle
backwards along that given vector.
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x y

z

(12,6,-6)

Can you make it to the whale?

Answer. Essentially, our question is asking if the vector (12, 6,−6) is contained in the span
of the three vectors (2, 1, 0), (0, 2, 1), (1, 0, 2).

I claim that it is! To see why, simply just start trying to combine these three vectors
into (12, 6,−6). If we assume that we fire the first engine for a units, the second for b units,
and the third for c units, we’re essentially trying to find a, b, c such that

a(2, 1, 0) + b(0, 2, 1) + c(1, 0, 2) = (12, 6,−6).

This gives us three equations, one for the x-coördinate, one for the y-coördinate, and a third
for the z-coördinate:

2a+ 0b+ 1c = 12,

1a+ 2b+ 0c = 6,

0a+ 1b+ 2c = −6.

Subtracting two copies of the second equation from the first gives us

−4b+ c = 0,

in other words c = 4b. Plugging this into the last equation gives us

b+ 2(4b) = −6,

i.e. b = −2
3 . This gives us then that c = −8

3 , and thus that

2a− 8

3
= 12,

i.e. a = 22
3 .
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Consequently, we’ve just calculated that

22

3
(2, 1, 0)− 2

3
(0, 2, 1)− 8

3
(1, 0, 2) = (12, 6,−6);

in other words, that (12, 6,−6) is in the span of our set of vectors, and therefore that we
can get to it by using our three engines as described by a, b, c!

We can turn span into a verb as follows:

Definition. Suppose that A = {~v1, . . . ~vn} is some set of vectors, drawn from some vector
space V . In the proposition above, we proved that span(A) is a subspace of the vector
space V : in other words, span(A) is a vector space in its own right! Suppose that span(A)
is equal to the vector space U . Then we say that A spans U .

This definition motivates a second kind of question: Take some vector space V . Can we
find a set A of vectors that spans V ?

The answer here is clearly yes: we can just pick A to be V itself! Then the span of A
is certainly V , because every vector of V is simply contained in A. Yet, this answer is also
kind of. . . dumb. While A spans V , it does so with a lot of redundancy: i.e. if V was R3,
we’d be using a set with infinitely many elements to span R3, when we really only need the
three vectors (1, 0, 0), (0, 1, 0), (0, 0, 1).

Here’s a related question, to help us spot this kind of inefficiency: suppose we have some
set A of vectors. Is it possible to remove a vector from A and still have a set with the same
span as A?

This concept also comes up all the time in mathematics! Therefore, we have a definition
for it:

Definition. Let V be some vector space over a field F , and A be a subset of V . We say that
the set A is linearly dependent if there is some n > 0 and distinct elements ~v1, . . . ~vn ∈ A,
field coefficients a1, . . . an 6= 0 ∈ F such that

~0 = a1 ~v1 + a2 ~v2 + . . . an ~vn.

In other words, a set A is linearly dependent if there is a linear combination of elements in
A that sums to 0.

If no such combination exists, then we say that A is linearly independent.

Notice that if a set is linearly dependent, then there is some vector within it that we
can remove without changing its span! If this was a linear algebra class, we’d prove this
here; instead we reserve it for the HW!

Lemma 1. Let V be a vector space over a field F , and S be a linearly dependent subset of
V . Then there is some vector ~v in S that we can remove from S without changing its span.

By repeatedly applying Lemma 1, you can get the following theorem:

Theorem 2. Any finite set of vectors S has a linearly independent subset T , such that
span(S) = span(T ).
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Side note. In the infinite case, things are much more complicated. In particular, the
above process, of repeatedly removing elements one-by-one, isn’t guaranteed to ever stop!
For example, suppose you had the set S = {(z, 0) : z 6= 0 ∈ Z}.

This is an infinite set. Moreover, because the span of this set is simply {(x, 0) : x ∈ R},
literally any single element (z, 0) of S will have the same span as S: this is because x

z (z, 0)
is a linear combination using just (z, 0) that can generate any element in span(S).

However, suppose you were simply removing elements one-by-one from S. It is possible,
through sheer bad luck, you would pick the elements (1, 0), (2, 0), (3, 0), (4, 0), . . . all in a
row. This would never get you down to a linearly independent set! In particular, you’d still
have all of the elements (z, 0) where z is a negative integer lying around, and there are tons
of linear combinations of these elements that combine to (0, 0).

So the argument above doesn’t work. However, the result is still true: there is a subset
that is linearly independent with the same span! Proving that this always exists, though,
is tricky, and requires the use of things like the axiom of choice. Talk to me if you want to
see how this works!

We define all of this so we can get to the concepts of basis and dimension:

1.5 Basis and dimension.

Definition. Take a vector space V . A basis B for V is a set of vectors B such that B is
linearly independent, and span(B) = V .

Bases are really useful things. You’re already aware of a few bases:

• The set of vectors ~e1 = (1, 0, 0 . . . 0), e2 = (0, 1, 0 . . . 0), . . . en = (0, 0 . . . 0, 1) is a basis
for Rn.

• The set of polynomials 1, x, x2, x3, . . . is a basis for R[x].

As a quick example, we study another interesting basis:

Question. Consider the set of vectors

S = {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}.

Show that this is a basis for R4.

Proof. Take any (w, x, y, z) ∈ R4. We want to show that there are always a, b, c, d such that

a(1, 1, 1, 1) + b(1, 1,−1,−1) + c(1,−1, 1,−1) + d(1,−1,−1, 1) = (w, x, y, z),

and furthermore that if (w, x, y, z) = (0, 0, 0, 0) that this forces a, b, c, d to all be 0. This
proves that the span of S is all of R4 and that S is linearly independent, respectively.

We turn the equation above into four equalities, one for each coördinate in R4:

a+ b+ c+ d = w

a+ b− c− d = x

a− b+ c− d = y

a− b− c+ d = z
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Summing all four equations gives us

4a = w + x+ y + z.

Adding the first two equations and subtracing the second two equations gives us

4b = w + x− y − z.

Adding the first and third, and subtracting the second and fourth gives us

4c = w + y − x− z.

Finally, adding the first and fourth and subtracting the second and third yields

4d = w + z − x− y.

So: if (w, x, y, z) = (0, 0, 0, 0), this means that a = b = c = d = 0. Therefore, our set is
linearly independent.

Furthermore, for any (w, x, y, z), we have that

w + x+ y + z

4
(1, 1, 1, 1) +

w + x− y − z
4

(1, 1,−1,−1)

+
w + y − x− z

4
(1,−1, 1,−1) +

w + z − x− y
4

(1,−1,−1, 1) = (w, x, y, z).

Therefore, we can combine these four elements to get any vector in R4; i.e. our set spans
R4.

This example is interesting because its entries satisfy the following two properties:

• Every vector is made up out of entries from ±1.

• The dot product of any two vectors is 0.

Finding a basis of vectors that can do this is actually an open question. We know that they
exist for any Rn where n is a multiple of 4 up to 664, but no one’s found such a basis for
R668. Find one for extra credit?

Another natural idea to wonder about is the following: given a vector space V , what
is the smallest number of elements we need to make a basis? Can we have two bases with
different lengths?

This is answered in the following theorem:

Theorem. Suppose that V is a vector space with two bases B1 = {~v1, . . . ~vn}, B2 =
{ ~w1, . . . ~wm} both containing finitely many elements. Then these sets have the same size:
i.e. |B1| = |B2|.
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We again reserve this for the HW!
Using this, we can finally define the concept of dimension:

Definition. Suppose that V is a vector space with a basis B containing finitely many
elements. Then we say that the dimension of V is the number of elements in B.

For example, the dimension of Rn is n, because this vector space is spanned by the
vectors ~e1 = (1, 0, 0 . . . 0), e2 = (0, 1, 0 . . . 0), . . . en = (0, 0 . . . 0, 1).
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