
Math/CS 120: Intro. to Math Professor: Padraic Bartlett

Lecture 3: Constructing the Natural Numbers

Weeks 3-4 UCSB 2014

When we defined what a proof was in our first set of lectures, we mentioned that
we wanted our proofs to only start by assuming “true” statements, which we said were
either previously proven-to-be-true statements or a small handful of axioms, mathematical
statements which we are assuming to be true. At the time, we “handwaved” away what
those axioms were, in favor of using known properties/definitions to prove results! In this
talk, however, we’re going to delve into the bedrock of exactly “what” properties are needed
to build up some of our favorite number systems.

1 Building the Natural Numbers

1.1 First attempts.

Intuitively, we think of the natural numbers as the following set:

Definition. The natural numbers, denoted as N, is the set of the positive whole numbers.
We denote it as follows:

N = {0, 1, 2, 3, . . .}

This is a fine definition for most of the mathematics we will perform in this class! However,
suppose that you were feeling particularly paranoid about your fellow mathematicians; i.e.
you have a sneaking suspicion that the Goldbach conjecture is false, and it somehow boils
down to the natural numbers being ill-defined. Or you think that you can prove P = NP
with the corollary that P = NP, and to do that you need to figure out what people mean
by these blackboard-bolded letters. Or you just wanted to troll your professors in CCS.
Or (more likely) your professor in CCS wanted to troll you, by (say) first asking for the
definition of the natural numbers, and then poking holes1 in your answers.

In these worlds, one might make the following objection:

What does “. . . ” mean?

For example, why is a number like 1010 in this set, but not 3.5? What “rule” for defining
our set is encapsulated by an ellipsis?

A possible second definition for N, that addresses the above criticism, is the following:

N = {x | We can write x as the sum 1 + 1 + . . .+ 1, for some number of 1’s.}

This kind-of answers what we meant by “. . . ” — N is the collection of all of the numbers
you get by repeatedly adding one to itself — but it replaces it with a new and equally opaque

1Slightly paraphrased Terry Pratchett: ”Demons were like genies or philosophy mathematics professors
- if you didn’t word things exactly right, they delighted in giving you absolutely accurate and completely
misleading answers.”
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ellipsis. What does this new “. . . ” mean: how many times are we allowed to add 1 to itself?
Can we add it to itself π times?

At this point, it is clear that we should avoid ellipses at all costs. Motivated by this, a
hypothetical mathematician might return with the following answer:

N = {x | x = 0, or there is some y in N such that y + 1 = x}.

No ellipses! Also, this is a good bit clearer: if we look at the above, we can see that we’re
definitely describing the set that contains zero, and all the things you get by repeatedly
adding one to zero!

However, this would not stop any suspicious student from raising more questions. For
example: what is zero? What is one? What is addition? Why will repeated addition of one
to zero get us to something like 1010, but not 3.5? In general, why isn’t this set R: after
all, for any r ∈ R, we can definitely write r = (r − 1) + 1 for some element (r − 1) ∈ R!

At this point, many mathematicians might be tempted to throw their chalk at their
audience. If we can’t even take things like 0 or 1 for granted, where do we even start? It
seems like we have nothing to start with!

. . . nothing to start with.

∅.

1.2 First Axioms

Well. If we have nothing to start with, let’s start with nothing. Or, to be very specific, let’s
start with an axiom: nothing exists2.

Axiom. (Empty Set Axiom.) There is a set containing no members. In symbols:

∃B such that ∀x, (x /∈ B).

We call this set the empty set, and denote it via the symbol ∅.

So. We have nothing, or (more formally) we can make a set that contains nothing. This
is surely a reasonable place to start: if a hypothetical skeptic is not willing to grant the
existence of a set containing zero elements, there is probably not much hope of getting them
to believe in a set containing more than zero elements.

From here, what can we do? Well: we have ∅. We also, one assumes, have the ability
to manipulate these sets! We write down a few rules for how this works, that (again) most
reasonable people would accept as rules to work with.

2Be very careful when parsing this statement

2



Axiom. (Axiom of Extensionality.) Two sets are equal if and only if they share the same
elements. In symbols:

∀A,B [∀z, ((z ∈ A)⇔ (z ∈ B))⇒ (A = B)].

Axiom. (Axiom of Pairing3.) Given any two sets A,B, we can make a set having as its
members just A and B:

∀A,B ∃C ∀x[x ∈ C ⇔ ((x = A) ∧ (x = B)].

If A and B are distinct sets, we write this set C as {A,B}, for shorthand; if A = B, then
we write it as {A}. (Recall that because sets do not contain multiple copies of the same
object, we would not have {A,A} as a set4.)

Axiom. (Axiom of Union, simple version.) Given any two sets A,B, we can make a set
whose members are those sets belonging to either A or B (or both!) In symbols:

∀A,B ∃C ∀x[x ∈ C ⇔ ((x ∈ A) ∧ (x ∈ B)].

We write this set C as A ∪B, for shorthand.

Sometimes, we will want to take unions of more than two things, or indeed more than
finitely many things (which is what we could do by simply repeatedly applying the above
union axiom.) This is possible, as given by the following stronger union axiom:

Axiom. (Axiom of Union, full version.) Given any set A, there is a set C whose elements
are exactly the members of the members of A. In symbols:

∀A ∃C [(x ∈ C)⇔ (∃A′(A′ ∈ A) ∧ (x ∈ A′))].

We denote this set as ⋃
A′∈A

A′.

On the homework, we have you show that this stronger form of union can be used to
get our simpler version!

3Slightly tweaked from the standard union axiom, for clarity’s sake. See me if you’d like to know the
differences between our version and the one used in standard ZFC.

4A potential objection one could make here, if one wanted to throw a wrench into the works, is the
following: what do we mean by a set? The answer, roughly speaking, is “we’re defining sets with these
axioms.” In other words: a set is any object that you can get by starting with the empty set and whatever
objects that you’ve defined to exist, and applying our axioms! While there are many axiom systems that
mathematicians have came up with, the standard model of set theory, Zermelo-Fraenkel+choice, is by far
and away the most popular system. It contains ten axioms; we’ve listed a few in slightly strange forms here.
If you’d like to learn about the others, come and talk to me!
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Axiom. (Axiom of Power Set.) Take any two sets A,B. We say that B ⊆ A if and only if
every member of B is a member of A: in symbols,

(B ⊆ A)⇔ (∀x(x ∈ B)⇒ (x ∈ A)).

Our axiom is the following claim: there is a set P(A), whose members are precisely the
collection of all possible subsets of A. In symbols:

∀A ∃P ∀B((B ⊆ A)⇔ B ∈ P ).

This is a bit weird, so we offer a few examples to illustrate this. Take the set A = {1, 2}.
Then the power set of A, written P(A), is the following set:{

∅, {1}, {2}, {1, 2}
}
.

Similarly, if B = {π, e,♣}, the power set of B is the following set:{
∅, {π}, {e}, {♣}, {π, e}, {π,♣}, {e,♣}{π, e,♣}

}
.

Using these axioms, we can make the following definition:

Definition. Take any set x. The successor of x, written S(x), is defined as the following
set:

S(x) = x ∪ {x}.

In other words: to form S(x), take the set x. By using pairing, form the set {x}. By using
union, form the set x ∪ {x}: this creates S(x)!

To illustrate the process, we calculate S(x) for a few sets that you already know here:

x = {1, 2, 3} ⇒ S(x) = {1, 2, 3, {1, 2, 3}}.
x = Q⇒ S(x) = Q ∪ {Q}.
x = ∅ ⇒ S(x) = ∅ ∪ {∅} = {∅}.

Formally speaking, that last set is the only one that we can make right now; we know
that we have the empty set, and thus we can form S(∅). This is a set containing precisely
one element, ∅. So, for brevity’s sake, let’s define 0 = ∅, 1 = S(∅)! This fixes some of our
earlier questions: we now know what 0 and 1 are! We can define more natural numbers
using this process:

• S(1) = 1 ∪ {1} = {0} ∪ {1} = {0, 1}. This has two elements: let’s call it 2.

• S(2) = 2 ∪ {2} = {0, 1} ∪ {2} = {0, 1, 2}. This has three elements: call it 3.

• S(3) = 3 ∪ {3} = {0, 1, 2} ∪ {3} = {0, 1, 2, 3}. This has four elements: call it 4.

• . . .

From here, it’s tempting to make the following definition for N:

N = {x | x = ∅, or x = S(y), for some other y ∈ N}.

However, this is not something we can directly do with our axioms. All we know how to
do is pair and take unions: this can get us to any n ∈ N, but actually getting all of the
natural numbers at once isn’t possible with these rules! Basically, we can make any finite
number, but getting an infinitely large set is impossible!
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1.3 More Axioms

To get such a set, we need another axiom! As it stands right now, our axioms only make
finite sets: to get to the infinite, we explicitly need to make an assumption that infinite
things exist5. To state this axiom, we need the following definition:

Definition. A set A is called inductive if it satisfies the following two properties:

• ∅ ∈ A.

• If x ∈ A, then S(x) is also in A.

Axiom. (Axiom of Infinity.) There is an inductive set. In symbols:

∃A (∅ ∈ A) ∧ (∀x ∈ A,S(x) ∈ A).

This is close to what we want: we can now make a set that contains the natural
numbers! This, however, is not the same as a set that is the natural numbers: the set given
by the above axiom could have lots of other things in it, beyond the natural numbers! We
need new axioms and definitions to deal with this: ones that can deal with infinite things,
in particular! We develop these here:

Definition. A formula, you might think, is any expression you can write with ∧,∨,⇒
,¬, (, ),∃,∀ and other relevant symbols, along with corresponding variables. However, at a
second glance, this looks like a bad definition: we have things like ¬((∧)∨) ∨ p, r ⇒ that
would be considered “formulas,” which are perhaps better regarded as nonsense.

Consequently, we need conditions on being “well-formed.” This is a little tedious to
get into, but it roughly means that your formula actually corresponds to a mathematical
statement of some kind: that is, your parentheses are balanced, you don’t have a variable
occurring in multiple quantifiers, your and statements take in two variables, and such things.
Formally, we define being well-formed for formulas about sets recursively, as follows:

• Given any two variables a, b, the strings a ∈ b and a = b are both well-formed formulas.

• If φ is a well-formed formula, then so is (¬φ).

• If φ and ψ are well-formed formulas, then so is (φ ∧ ψ). Similarly, so is (φ ∨ ψ) and
(φ⇒ ψ).

• If φ is a well-formed formula and x is a variable, then (∀x φ) and (∃x φ) are both
well-formed formulas.

Unless otherwise specified, we will drop the “well-formed” claim and simply use the word
formula to refer to a well-formed formula. (It also bears noting that we can form formulas
about things other than sets; they will look similar to the formulas above, except instead
of starting with a ∈ b, a = b’s we’d have other sorts of true/false expressions, like x < y or
x|y.)

5See this link for an interesting discussion on why infinity is a useful thing to believe in, amongst other
threads on stackexchange.
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Definition. We say that a variable in a formula is free if it is not referred to by any of the
quantifiers, and call it bound otherwise. For example, in

∀x(∃y(z ∧ y))

the variables x, y are bound, while the variable z is free.
Note that if a formula has no free variables, it is a mathematical statement, as defined

earlier in class, and thus is something that can be either true or false!

We care about this concept of “formula” because it describes, in a sense, the kinds of
claims we can mathematically make about objects! For example, if we wanted to make a
formula that says “the set A has at least three elements,” we could simply write

∃x, y, z
(
¬
(
(x = y) ∨ (y = z) ∨ (x = z)

))
∧
(

(x ∈ A) ∧ (y ∈ A) ∧ (z ∈ A)
)
.

This formula claims that there are three objects x, y, z, such that these are all distinct and
all members of A. If you wanted to strengthen our formula to the claim “the set A has
exactly three elements,” we would instead have

∃x, y, z
(
¬
(
(x = y) ∨ (y = z) ∨ (x = z)

))
∧
(

(x ∈ A) ∧ (y ∈ A) ∧ (z ∈ A)
)

∧
(
∀w, (w ∈ A)⇒

(
(w = x) ∨ (w = y) ∨ (w = z)

))
.

This is the same formula as before, except with a third clause that says “for any fourth
element w that is in A, this fourth element is actually equal to one of our earlier three
elements x, y, z.” In other words, this formula is precisely the claim that A has three
elements!

Suppose that we have a formula φ with one free variable: for example, suppose we have
the formula we just described above for sets that contain exactly three elements, which
has one free variable given by A. You can think of this formula as describing a property
of sets: i.e. every set that this formula holds true for could be thought of satisfying that
formula, and every set that this formula holds false for could be thought of as failing that
formula.

A reasonable thing to want to do, given any formula, is to find all of the sets out of
some collection that satisfy that formula! For example, given a collection of sets, I might
want to pick out all of the elements of that set that contain three elements, or that contain
some fixed element x, or a bunch of other properties. As it currently stands, our axioms
don’t let us do this: we can just take unions and pairings!

Let’s fix that.

Axiom. (Axiom Schema of Specification.) Take any set A. As well, take any formula φ,
with free variables in the set x, y, w1, . . . wn, such that the symbol B is not a variable in φ.
We can then form the set B of all of the elements in A that “satisfy” φ! We write this in
symbols below:

∀A ∀w1, . . .∀wn ∃B ∀x [(x ∈ B)⇔ ((x ∈ A) ∧ φ))].
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This is a little weird at first, so we give an example. Suppose that we have two sets A,B.
Something we might want to create at some point in time is their intersection: that is,
the collection of all elements that are members of both A and B. We express the existence
of this set as follows:

∀A,B ∃C ∀x [(x ∈ C)⇔ ((x ∈ A) ∧ (x ∈ B))].

For any two specific sets A,B, we denote this set as A ∩B.
Notice that we can extend this to intersections of arbitrarily many sets. Suppose we

have any set A, and we want to form the intersection of all of the elements A′ ∈ A. We can
do this using our axiom as follows:

∀A ∃C ∀x [(x ∈ C)⇔ (∀A′((A′ ∈ A)⇒ (x ∈ A′))].

We denote this set as ⋂
A′∈A

A′.

You might notice that we asked in our axiom for something a bit weaker than what
you’d naturally think we can do. That is: our axiom said that given any set A and formula
φ, we can pick out all of the elements of A that satisfy φ. However, the natural thing to
want here is the following: given a formula φ, why can’t we just pick out all of the things
that satisfy φ? In other words: why do we have to restrict ourselves to picking elements
from within some fixed set A — why not just pick our elements from everything?

As it turns out, there are good reasons for the restriction we’ve given above: in that
if I let you pick out properties from everything, you can create contradictions (which are
bad!) To give a specific example: consider the “set” made of all sets that do not contain
themselves as an element:

S = {A | A /∈ A}.

The word set is in quotes above because this is not actually a set we can form with our
axioms. While the property φ :6 (A ∈ A) is a property we can write, the elements of the
collection S above aren’t restricted to the elements of any specific set!

Because of this, we get some rather unfortunate side-effects. Consider the following
natural question: is S ∈ S? Well: if S ∈ S, then it would be a set that contains itself.
Consequently, this would make S not an element of itself, as S is only made out of sets that
do not contain theirselves. In other words: we have a contradiction!

Therefore, we must have S /∈ S. But this also causes a problem: because S is made up
precisely of those sets that do not contain theirselves, and S /∈ S, we would have S ∈ S!
Another contradiction.

Therefore, no matter what we do here, we would have a contradiction! The problem,
therefore, clearly lies at the start of our argument: S cannot be a set! This is why we ask
the axiom of specification to limit itself to the elements of a given set that satisfy a given
property: to avoid precisely this kind of self-referential paradox.
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1.4 Actually Defining N

From here, we can finally start to define N. Take any inductive set S. Let NS be defined
as follows:

NS =
⋂

A⊆ S,
A is inductive

A.

Note that because “being inductive” is a formula we can write out, and the collection of all
subsets of S is also a set we can form, we can use our specification axiom to form this set!
(Fill in details here if you’re skeptical.)

Our first claim is that these sets are all the same:

Theorem. Take any two inductive sets S, T , and form the sets NS ,NT . Then NS = NT .

Proof. By the Axiom of Extensionality, the two sets NS ,NT are equal if and only if they
share the same elements. Proving this is easy: look at the intersection C = NS ∩NT of our
two sets. Notice the following properties of this set C:

1. C is a subset of NS .

2. Consequently, C is a subset of S.

3. C is an inductive set (the proof of this is on your homework!)

4. By points 2 and 3, we know that because

NS =
⋂

A⊆ S,
A is inductive

A,

the set C shows up as one of the inductive sets that we intersected to form NS . In
other words, NS ⊆ C.

By definition, property 1 above simply says that every element of C is an element of NS ,
while property 4 says that every element of NS is an element of C. Therefore, by our axioms,
these sets are equal, as claimed! The same logic applies to NT : therefore NS = NT .

Using this theorem, we are justified in making the following definition for N:

Definition. Take any inductive set S, and form the set NS . This set is the natural numbers,
which we denote as N (because as shown above, the inductive set S itself does not change
what NS is, which justifies us in ignoring the S-subscript.)

Woo! Eight pages in and we have the natural numbers. What can we do with them?
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1.5 Properties of N

Well: as a mathematician, once you’ve built an object, the first thing you want to do
is discover all of its properties! The Peano axioms are a collection of several such
statements:

1. 0, which we defined as the empty set ∅, is a natural number.

2. If a is a natural number, then S(a) is also a natural number.

3. For any natural number a, S(a) 6= 0.

4. For any two natural numbers a, b ∈ N, if S(a) = S(b), then a = b. In other words,
S() is an injection.

5. If K is an inductive set, then N ⊆ K.

Properties 1, 2 and 5 are free, by definition; as well, property 3 holds because for any a,
S(a) counts a as a member, and thus is not the empty set. The only tricky one is property
4, which we prove using a few propositions:

Proposition. Suppose that a is a natural number, and that b is an element of a: i.e. b ∈ a.
Then b ⊆ a.

Proof. This is a fun proof structure. Consider the following set S:

X = {a ∈ N | ∀ b ∈ a, we have b ⊆ a}.

This set is the collection of all natural numbers that have the property that we want. We
want to show that this set actually contains all of the natural numbers: in other words,
that X = N!

To do this, we will simply show that this set is an inductive set: in other words, that

• ∅ ∈ X, and

• if a ∈ X, then S(a) ∈ X as well.

Because we can form N by taking any inductive set and intersecting all of its inductive
subsets, we could then form N as a subset of X. Because X is already a subset of N, we
would have X ⊂ N and N ⊂ X, which we’ve shown in an earlier proof implies these sets are
equal.

To see that X is inductive, simply note the following:

• Consider any sentence of the form “if blah is an element of the empty set, then property
foo holds.” Because the empty set has no members, the first part of this implication
statement is always false. Therefore, there is no way for this implication statement
to break; the only way to falsify an implication statement is to find a situation where
the premise holds and the conclusion fails, and we’ve just said that our premise never
holds! Consequently, this sentence is always true, no matter what foo is.

In particular, this holds for the sentence “if blah is an element of the empty set, then
blah is a subset of the empty set.” Therefore, we have shown that ∅ is a member of
X, as claimed.
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• Take the set X, and any element a in X. Construct the set S(a) = a∪ {a}. We want
to show that S(a) ∈ X holds: in other words, that if we take any element from the
set a ∪ {a}, it is a subset of S(a).

There are two possibilities. We can pick an element b from a ∪ {a} that is from the
left-hand-side of the union, that is an element of a itself. By definition, because a ∈ X,
we know that b ⊆ a; consequently, we have b ⊆ a ∪ {a} = S(a) as well! (Prove why
this last line follows if you don’t see why.)

Alternately, we could pick an element b from a ∪ {a} from the right-hand side of the
union: that is, we could pick b = a. Then a ⊂ a ∪ {a}! (Again, justify this last line if
you don’t see why it holds.)

This proves that X is an inductive set, which as we noted above is enough to show that
X = N; i.e. that every member of N satisfies the claimed property.

We place a similar problem on your homework:

Proposition. Suppose that a is a natural number, and that b is an element of a: i.e. b ∈ a.
Then a is not a subset of b: in symbols, a 6⊆ b.

Using these two propositions, we can finally prove the fourth Peano axiom here:

Proposition. For any two natural numbers a, b ∈ N, if S(a) = S(b), then a = b.

Proof. Take any two natural numbers a, b such that S(a) = S(b). Suppose that a 6= b; we
will show that this contradicts our known properties of N, and thus not a possibility.

Because S(a) = S(b), we know that in particular every element of S(a) is an element
of S(b), and vice-versa. So, because a ∈ a ∪ {a} = S(a), we have a ∈ b ∪ {b}; similarly, we
have b ∈ a ∪ {a}.

If a 6= b, we would have to have a ∈ b and b ∈ a. But this contradicts our proposition
above: we showed that if a ∈ b, then b 6⊆ a, and therefore that we cannot have b ∈ a (as
that implies that b ⊆ a.) Therefore this is an impossible situation to have arrived at, and
so our assumption at the start (that a 6= b) must be impossible! In other words, we have
proven that for any a, b ∈ N, if S(a) = S(b), then a = b.

From here, we could easily spend a few more weeks making more things rigorous along
these lines, like the following.

1. First, notice that given any two sets A,B, we can form their Cartesian product
A × B, which consists of the collection of ordered pairs (a, b) with a ∈ A, b ∈ B, For

example, if A = {1, 2}, B = {c, f}, their Cartesian product A× B would be the

collection {(1,c), (2,c), (1,f), (2,f), }.
How do we make this kind of set with our axioms? Well: first, make the following
definition: the ordered pair (x, y) will simply be shorthand for the set {{x}, {x, y}}.
In other words, to specify an ordered pair, we will simply specify the two elements
in the ordered pair, along with which element is “first.” Note that if x = y, this
simplifies down to {{x}}.
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Now suppose we have a set A. How do we get all of the ordered pairs of elements
from A? Well: look at the power set of the power set of A, i.e. P(P(A)). Elements
of this collection consist of sets of subsets of A! So: write a formula that asks for the
following:

• We want to only pick out a set B of subsets of A if it has at least one element in
it and at most two elements in it.

• If B has one element, that element should be a set containing one element.

• If B has two elements, one of them should be a one-element subset, the other
should be a two-element subset, and the only element in the one-element subset
should be a member of the two-element subset.

This is clearly something we can write a formula for (see the homework!), and will let
us pick out the collection of all ordered pairs of elements of A: in other words, A×A!

For two different sets A,B, simply use the construction above on the set A ∪B, and
add a final condition on your formula that asks that the “first” element of your pair
is in A, and that the second element of your pair is in B. This constructs A×B.

2. With the Cartesian product formed, we can make the notion of a relation rigorous.
A relation R on a Cartesian product A × B is simply a subset of the elements of
A × B: you can think of R as simply a way of saying that certain pairs of elements
are related (i.e. they’re in R, i.e. R labels them as “true”) and that other pairs are
not (i.e. they’re not in R, i.e. R labels them as “false.”)

You know many examples of relations:

• Equality (=), on any set S you want, is a relation; it says that x = x is true for
any x, and that x = y is false whenever x and y are not the same objects from
our set. From the set perspective, this is just the relation R = {(x, x) | x ∈ S}.
• “Mod n” (≡ mod n) is a relation on the integers: we say that x ≡ y mod n is

true whenever x− y is a multiple of n, and say that it is false otherwise.

• “Less than” (<) is a relation on many sets, for example the real numbers; we
say that x < y is true whenever x is a smaller number than y (i.e. when y− x is
positive,) and say that it is false otherwise.

• “Beats” is a relation on the three symbols (rock, paper, scissors) in the game
Rock-Paper-Scissors. It says that the three statements “Rock beats scissors,”
“Scissors beats paper,” and “Paper beats rock” are all true, and that all of the
other pairings of these symbols are false.

3. A particularly famous example of a relation is a function! A function from a set A
to a set B is simply a relation on A×B with the following properties:

• Every element A is related to some element B. (That is, our function is defined
on every element in its domain.)

• No element in A is related to two elements in B. (That is, our function is
well-defined: it doesn’t send an element to two different places.)
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For example, the function f(x) = x2 on the reals, in set notation, would look like the
following:

{(x, x2) | x ∈ R}.

4. In mathematics, a common way to define a function is via recursion, which is when
you define a function by giving it

• A handful of base cases, for which the function is explicitly defined, and

• A set of rules that tell you how to reduce any other input to the base case.

For example, the Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

is defined recursively via the rules

• f(0) = 0, f(1) = 1, and

• f(n+ 1) = f(n) + f(n− 1).

The recursion theorem in set theory says that the above method is a valid way to
define a function: in other words, giving a set of recursive rules does create a function!

5. Addition: using the recursion theorem, we could define addition on the natural num-
bers recursively as follows:

• For any n ∈ N, n+ 0 = 0.

• For any n,m ∈ N where m 6= 0, n+m = S(n) + P (m), where P (m) denotes the
“precursor of m,” i.e. the natural number such that S(P (m)) = m.

6. Similarly, we could define multiplication recursively via addition:

• For any n ∈ N, n · 0 = 0.

• For any n,m ∈ N where m 6= 0, n ·m = n+ (n · P (m)).

7. We could also define a relation < on the natural numbers, by setting n < m if and
only if n ∈ m.

Finally, with all of this built up, we can list a number of properties that the natural
numbers satisfy with respect to these properties:

• Closure(+): ∀a, b ∈ N, we have a+b ∈
N.

• Identity(+): ∃0 ∈ N such that ∀a ∈
N, 0 + a = a.

• Commutativity(+): ∀a, b ∈ N, a +
b = b+ a.

• Associativity(+): ∀a, b, c ∈ N, (a +
b) + c = a+ (b+ c).

• Closure(·): ∀a, b ∈ N, we have a · b ∈
N.
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• Identity(·): ∃1 ∈ N such that ∀a ∈ N,
1 · a = a.

• Commutativity(·): ∀a, b ∈ N, a · b =
b · a.

• Associativity(·): ∀a, b, c ∈ N, (a · b) ·
c = a · (b · c).

• Antireflexivity(<): ∀a ∈ N, a 6< a.

• Antisymmetry(<): ∀a, b ∈ N, ex-
actly one of (a < b, a = b,b < a) holds.

• Transitivity(<): ∀a, b, c ∈ N, if a < b
and b < c, we have a < c.

• Well-Ordering(<): Any subset of
natural numbers has a least element.

• Add. Order(<,+): ∀a, b, c ∈ N, if
a < b, then a+ c < b+ c.

• Distributivity: (+, ·) : ∀a, b, c ∈
N, (a+ b) · c = (a · c) + (b · c)

In the interests of time and sanity, we won’t prove or go through these properties or
proofs, as it would take us a long while!

Instead, next week, we’re going to instead talk about a natural extension of the natural
numbers: the integers!
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