CCS Problem-Solving I
 Homework 1: Introduction / Russian Problems

Professor: Padraic Bartlett

Due at the start of the next class. UCSB 2014

Solve as many as you can! Instructions are in the syllabus. Prove any claims you make.

1. Is $\sin \left(10^{\circ}\right)$ a rational number?
2. Which number is larger: $\log _{2}(3)$ or $\log _{3}(5)$? (For this problem, simply using Mathematica is not enough; you need a proof that doesn't use any computer-aided algebra systems.)
3. Take an arbitrary quadrilateral. In how many ways can you represent it as the union of two triangles? (Hints: break your quadrilateral into two cases, depending on whether or not your polygon is convex.)
4. Can you find an equilateral triangle T in the plane such that all three vertices of T have integer coördinates?
5. Find all of the functions $F: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following property:

$$
\text { For all } x, y \text { in } \mathbb{R}, \quad F(x)-F(y) \leq(x-y)^{2}
$$

6. Call a pair of integers a, b intermingled ${ }^{1}$ if they satisfy the following properties:
(a) a and b are distinct.
(b) The prime decompositions of a and b share the same primes. In other words: if p is a prime that divides a, then it divides b. As well, if p is a prime that divides b, then it divides a as well.
(c) The prime decompositions of $a+1$ and $b+1$ also share the same primes.

For example, $(2,8)$ satisfies this property; 2 and 8 both have only 2 's in their prime factorizations, while 3 and 9 both only have 3 's. $(6,48)$ is another pair.
Are there infinitely many such pairs?

[^0]
[^0]: ${ }^{1}$ I made up this term.

