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Lecture 4: Spectral Graph Theory

Weeks 7-9 UCSB 2015

We’ve studied a number of different intersections of graph theory and other fields
throughout this quarter; we’ve seen how graphs interact with physics, Dirichlet bound-
ary problems, flows, algorithms, and algebra! In these notes, we will turn to studying the
field of spectral graph theory: the study of how graph theory interacts with the field of
linear algebra!

To do this, um, we need some more linear algebra. That’s what these notes start off
with!

1 Eigenvalues and Eigenvectors

1.1 Basic Definitions and Examples

Definition. Let A be a n×n matrix with entries from some field F . (In practice, in exam-
ples we will assume that F is the real numbers R unless otherwise stated. It is worthwhile
to occasionally think about this field being C, when you’re working on problems on your
own.) We say that ~v ∈ Fn is an eigenvector and λ ∈ F is an eigenvalue if

A~v = λ~v.

We ask that ~v 6= ~0, to avoid silly trivial cases.
Finally, given any eigenvalue λ, we define the eigenspace Eλ associated to λ as the set

of all of the eigenvalues associated to λ: i.e. we define

Eλ = {~v ∈ V | A~v = λ~v}.

Notice that Eλ is a vector space for any λ (prove this if you don’t see why!)
We say that an eigenvalue λ occurs with multiplicity k in an n × n matrix A if

dim(Eλ) = k. The idea here is that there are “k dimensions” of eigenvectors corresponding
to λ, so we want to consider it as occurring “k times.” (as if we had k distinct eigenvectors
they would also take up k dimensions of space as well!)

Example. Does the matrix

A =

[
1 2
2 1

]
have any real or complex-valued eigenvalues or eigenvectors? If so, find them.

Proof. We find these eigenvalues and eigenvectors via brute force (i.e. just using the defi-
nition and solving the system of linear equations.) To do this, notice that if (x, y) 6= (0, 0)
is an eigenvector of A and λ is a corresponding eigenvalue to (x, y), then we have[

1 2
2 1

]
·
[
x
y

]
= λ

[
x
y

]
.
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In other words, this is the pair of linear equations

x+ 2y = λx,

2x+ y = λy.

We want to find what values of λ, x, y are possible solutions to this equation. To find these
solutions, notice that if we add these two equations together, we get

3x+ 3y = λ(x+ y).

If x + y is nonzero, we can divide through by x + y to get λ = 3, which is one potential
value of λ. For this value of λ, we have

x+ 2y = 3x,

2x+ y = 3y

⇒ 2y = 2x,

2x = 2y.

In other words, it seems like 3 is an eigenvalue for any eigenvector of the form (x, x). This
is easily verified: simply notice that[

1 2
2 1

]
·
[
x
x

]
=

[
3x
3x

]
= 3

[
x
−x

]
,

which precisely means that 3 is an eigenvalue corresponding to vectors of the form (x, x).
Otherwise, if x+y = 0, we can use this observation in our earlier pair of linear equations

to get

y = λx,

x = λy.

If one of x, y = 0, then x+ y = 0 forces the other to be zero, and puts us in the trivial case
where (x, y) = (0, 0), which we’re not interested in. Otherwise, we have both x, y 6= 0, and
therefore that λ = x

y = y
x . In particular, this forces x = λy and λ = ±1.

If we return to the two equations

x+ 2y = λx,

2x+ y = λy,

we can see that λ = 1 is not possible, as it would force x+ 2y = x, i.e. y = 0. Therefore we
must have λ = −1, and therefore x = −y. In other words, it seems like −1 is an eigenvalue
with corresponding eigenvectors (x,−x). Again, this is easily verified: simply notice that[

1 2
2 1

]
·
[
x
−x

]
=

[
−x
x

]
= −1

[
x
−x

]
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which precisely means that −1 is an eigenvalue corresponding to vectors of the form (x,−x).

In this case, we had a 2 × 2 matrix with 2 distinct eigenvalues, each one of which
corresponded to a one-dimensional family of eigenvectors. This was rather nice! It bears
noting that things are often not this nice, as the following example illustrates:

Example.

A =

[
0 −1
1 0

]
have any real or complex-valued eigenvalues or eigenvectors? If so, find them.

Proof. We proceed using the same brute-force method as before. If there was an eigenvector
(x, y) 6= (0, 0) and corresponding eigenvalue λ, we would have[

0 −1
1 0

]
·
[
x
y

]
= λ

[
x
y

]
.

In other words, we would have a solution to the system of equations

−y = λx

x = λy.

If one of x, y are equal to zero, then the two linear equations above force the other to be
zero; this puts us in the trivial case where (x, y) = (0, 0), which we’re not interested in.
Otherwise, we can solve each of the linear equations above for λ, and get

−y
x

= λ

x

y
= λ.

In other words, we have − y
x = x

y . Because both x and y are nonzero, this equation is
equivalent to (by multiplying both sides by xy)

−y2 = x2.

This equation has no real-valued solutions, because any nonzero real number squared is
positive. If we extend our results to complex-valued solutions, we can take square roots
to get iy = ±x. This gives us two possible values of λ : either i with corresponding
eigenvectors (x,−ix), or −i with corresponding eigenvectors (x, ix). We check that these
are indeed eigenvalues and eigenvectors here:[

0 −1
1 0

]
·
[
x
−ix

]
=

[
ix
x

]
= i

[
x
−ix

]
,[

0 −1
1 0

]
·
[
x
ix

]
=

[
−ix
x

]
= −i

[
x
ix

]
.
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This was an example of a 2× 2 matrix that has no real eigenvalues or eigenvectors, but
did have two distinct complex-valued eigenvalues, each with corresponding one-dimensional
families of eigenvectors. You might hope here that this is always true; i.e. that working in
the complex plane is enough to always give you lots of eigenvectors and eigenvalues!

This is not true, as the following example indicates:

Example. Consider the n× n matrix

A =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1


,

formed by filling the main diagonal and the stripe directly above the main diagonal with
1’s, and filling the rest with zeroes. Does this matrix have any real or complex-valued
eigenvalues or eigenvectors? If so, find them.

Proof. We proceed as before. Again, let (x1, . . . xn) 6= ~0 denote a hypothetical eigenvector
and λ a corresponding eigenvalue; then we have

A =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1


·



x1
x2
x3
. . .
xn−1
xn

 = λ



x1
x2
x3
. . .
xn−1
xn

 .

This gives the following set of n linear equations:

x1 + x2 = λx1,

x2 + x3 = λx2,

...

xn−1 + xn = λxn−1,

xn = λxn.

There are at most two possiblities:

1. λ = 1. In this case, we can use our first equation x1 + x2 = x1 to deduce that x2 = 0,
the second equation x2 + x3 = x2 to deduce that x3 = 0, and in general use the k-th
linear equation xk + xk+1 = xk to deduce that xk+1 = 0. In other words, if λ = 1, all
of the entries x2, . . . xn are all 0. In this case, we have only the vectors (x1, 0, . . . 0)
remaining as possible candidates. We claim that these are indeed eigenvectors for the
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eigenvalue 1: this is easily checked, as

A =



1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1


·



x1
0
0
. . .
0
0

 =



x1 + 0
0
0
. . .
0
0

 = 1



x1
0
0
. . .
0
0

 .

2. We are trying to find any value of λ 6= 1. If this is true, then our last equation
xn = λxn can only hold if xn = 0. Plugging this observation into our second-to-last
equation xn−1 + 0 = λxn−1 tellsus that xn−1 is also zero. In general, using induction
(where our base case was proving that xn = 0, and our inductive step is saying that
if xk = 0, we have xk−1 also equal to zero) we get that every xk must be equal to
zero. But this is the trivial case where (x1, . . . xn) = ~0, which we’re not interested in
if we’re looking for eigenvectors. Therefore, there are no eigenvectors corresponding
to non-1 eigenvalues.

So; in this case, we found a n× n matrix with only one eigenvalue, corresponding only to
a one-dimensional space of eigenvectors! In other words, sometimes there are very very few
eigenvectors or eigenvalues to be found.

So: eigenvalues and eigenvectors! We have an ad-hoc method for finding them (lots
of linear equations) and have seen through examples that there are sometimes very few of
them for a given matrix. We have not yet talked about why we care about them, though
— why look for these things?

The short answer is that they’re useful. Honestly? They’re probably the most useful
thing in linear algebra, and arguably in mathematics as a whole. Understanding eigenvalues
and eigenvectors is fundamental to thousands of problems, ranging from the most practical
of applications in physics and economics to the airiest of theoretical constructions in higher
mathematics. To give a bit of an idea for what these applications look like, we do two
examples here:

1.2 Why We Care: The Internet

Perhaps one of the most commonly used applications of eigenvalues and eigenvectors is
Google’s PageRank algorithm. Basically, before Google came along, web search engines
were atrocious; many search results were not very-sophisticated massive keyword-bashes
plus some well-meaning but dumb attempts to improve these results by hand. Then Brin
and Page came onto the scene, with the following simple idea:

Important websites are the websites other important websites link to.

This seems kinda circular, so let’s try framing this in more of a graph-theoretic frame-
work: Take the internet. Think of it as a collection of webpages, which we’ll think of as
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“vertices,” along with a collection of hyperlinks, which we’ll think of as directed lines1 going
between webpages. Call these webpages {v1, . . . vn} for shorthand, and denote the collection
of webpages linking to some vi as the set LinksTo(vi).

In this sense, if we have some quantity of “importance” rank(vi) that we’re associating
to each webpage i, we still want it to obey the entire “important websites are the websites
other important websites link to” idea. However, we can refine what we mean by this a little
bit. For example, suppose that we know a website is linked to by Google. On one hand,
this might seem important — Google is an important website, after all! — but on the other
hand, this isn’t actually that relevant, because Google basically links to everything. So
we don’t want to simply say something is important if it’s linked to by something important
— we want to weight that importance by how many other things that important website
links to! In other words, if you’re somehow important and also only link to a few things,
we want to take those links very seriously — i.e. if something is linked to by the front page
of the New York Times or the Guardian, that’s probably pretty important!

If we write this down with symbols and formulae, we get the following equation:

rank(vi) =
∑

vj∈LinksTo(vi)

rank(vj)

number of links leaving(vj)
.

In other words, to find your rank, we add up all of the ranks of the webpages that link to
you, scaling each of those links by the number of other links leaving those webpages. This
is . . . still circular. But it looks mathier! Also, it’s more promising from a linear-algebra
point of view. Suppose that we don’t think of each ranking individually, but rather take
them all together as some large rank vector ~r = (rank(v1), . . . rank(vn)).

As well, instead of thinking of the links one-by-one, consider the following n× n “link-
matrix” A, formed by doing the following:

• If there is a link to vi from vj , put a 1
number of links leaving(vj)

in the entry (i, j).

• Otherwise, put a 0.

This contains all of the information about the internet’s links, in one handy n× n matrix!
Now, notice that if we multiply this matrix A by our rank vector ~r, we get

A · ~r =


∑

vj∈LinksTo(v1)
rank(vj)

number of links leaving(vj)∑
vj∈LinksTo(v2)

rank(vj)
number of links leaving(vj)

...∑
vj∈LinksTo(vn)

rank(vj)
number of links leaving(vj)

 .

In other words, if we the “mathy” version of the importance rule we derived earlier, we have

A · ~r = ~r.

In other words, the vector ~r that we’re looking for is an eigenvector for A, corresponding
to the eigenvalue 1! The entries in this eigenvector then correspond to the “importance”

1A “series of tubes,” if you will.
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ranks we were looking for. In particular, the coordinate in the vector ~r with the highest
value corresponds to the “most important” website, and should be the first page suggested
by the search engine.

Up to tweaks and small modifications, this is precisely how search works nowadays;
people come up with quick and efficient ways to find eigenvectors for subgraphs of the
internet that correspond to the eigenvalue 1. (Actually finding this eigenvector in an efficient
manner is a problem people are still working on!)

1.3 Fibonacci Numbers

It bears noting that eigenvalues aren’t only useful for applications: they have lots of theo-
retical and mathy uses as well! Consider the Fibonacci sequence, defined below:

Definition. The Fibonacci sequence {fn}∞n=1 is the sequence of numbers defined recur-
sively as follows:

• f0 = 0,

• f1 = 1,

• fn+1 = fn + fn−1.

The first sixteen Fibonacci numbers are listed here:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 . . .

Here’s a question you might want to ask, at some point in time: what’s f1001? On one
hand, you could certainly calculate this directly, by just finding all of the numbers in the
sequence from 1 up to 1001. But what if you needed to calculate this quickly? Could you
find a closed form?

The answer is yes, and the solution comes through using eigenvectors and eigenvalues!
Specifically, notice the following:[

1 1
1 0

]
·
[
fn
fn−1

]
=

[
fn + fn−1

fn

]
=

[
fn+1

fn

]
.

In other words, if we take a vector formed by two consecutive Fibonacci sequence elements,

and multiply it by the matrix

[
1 1
1 0

]
, we shift this sequence one step forward along the

Fibonacci sequence!
Therefore, if we want to find f1001, we can just calculate
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[
1 1
1 0

]k
·
[
f1
f0

]
=

[
1 1
1 0

]999
·
[
1 1
1 0

]
·
[
f1
f0

]
=

[
1 1
1 0

]999
·
[
f2
f1

]
=

[
1 1
1 0

]998
·
[
f3
f2

]
...

=

[
f1001
fk

]
.

So: we just need to find

[
1 1
1 0

]k
! This is not an obviously easy task: multiplying the

matrix by itself a thousand times seems about as difficult as adding the Fibonacci numbers
to themselves that many times. However, with the help of eigenvalues, eigenvectors, and
the concept of orthogonality, this actually can be made rather trivial!

First, let’s find the eigenvalues and eigenvectors for this matrix. As before, we just use
brute force: we seek (x, y) 6= (0, 0) and λ such that

[
1 1
1 0

]
·
[
x
y

]
= λ

[
x
y

]
.

In terms of linear equations, this is just asking for x, y, λ such that

x+ y = λx

x = λy.

First, notice that if either x or y are zero, then the other is zero by the second equation,
which puts us in the trivial case (x, y) = (0, 0), which we don’t care about.

Now, note that if we substitute the second equation into the first, we get

λ2y − λy − y = 0.

If we divide through by y (which we can do, because it is nonzero,) we get

λ2 − λ− 1 = 0.

We can use the quadratic formula to see that this has the roots

1±
√

5

2
.

These are very famous values! In particular, the quantity

1 +
√

5

2
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is something that people have been studying for millenia — it’s the famous golden ratio,
denoted by the symbol ϕ. It has tons of weird and useful properties, but the main one I
want us to note here is that

1−
√

5

2
=

(1−
√

5)(1 +
√

5)

2(1 +
√

5)
=

1− 5

2(1 +
√

5)
= − 2

1 +
√

5
= − 1

ϕ
.

In other words, the two possible values of λ are ϕ,− 1
ϕ .

For each of these, we can solve for x, y: if we have λ = ϕ, then the pair of equations

x+ y = ϕx

x = ϕy

has solutions given by (ϕy, y). Similarly, if we have λ = − 1
ϕ , then the pair of equations

x+ y = − 1

ϕ
x

x = − 1

ϕ
y

has solutions given by (− y
ϕ , y).

So: we have the eigenvectors and eigenvalues! Now, notice the following very clever
trick we can do with these eigenvalues and eigenvectors. First, notice that we have[

1 1
1 0

]
·
[
ϕx − y

ϕ

x y

]
=

[
ϕ2x y

ϕ2

ϕx − y
ϕ

]
.

This is not hard to see: if you think of the

[
ϕx − y

ϕ

x y

]
matrix as just two columns, each of

which are eigenvectors, then the right-hand-side is just a result of that eigenvector property.
Now: notice that the right-hand-side can be written[

ϕ2x y
ϕ2

ϕx − y
ϕ

]
=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
.

As a result of this, we have[
1 1
1 0

]
·
[
ϕx − y

ϕ

x y

]
=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
,

which implies [
1 1
1 0

]
=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
[
ϕx − y

ϕ

x y

]−1

9
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And this is fantastic! Why? Well, notice that if we’re calculating something like

[
1 1
1 0

]k
,

we have

k copies︷ ︸︸ ︷[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
���

���[
ϕx − y

ϕ

x y

]−1

·
�
����

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
���

���[
ϕx − y

ϕ

x y

]−1

· . . . ·
�
����

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]
·
[
ϕx − y

ϕ

x y

]−1

.

=

[
ϕx − y

ϕ

x y

]
·
[
ϕ 0
0 − 1

ϕ

]k
·
[
ϕx − y

ϕ

x y

]−1

.

And this is easy to calculate — if we take a diagonal matrix and raise it to a large power,
we just get the matrix formed by raising those diagonal entries to that power2! In other
words, we get [

1 1
1 0

]k
=

[
ϕx − y

ϕ

x y

]
·
[
ϕk 0
0 (− 1

ϕ)k

]
·
[
ϕx − y

ϕ

x y

]−1
.

Great! If we can just find

[
ϕx − y

ϕ

x y

]−1
, then this is a very easy calculation: we just

have to multiply three matrices, instead of a thousand. Much less work!
To find this inverse matrix, notice the following special property about these eigenvec-

tors: if we take one eigenvector for ϕ and another for − 1
ϕ , those two vectors are orthogonal!

Specifically, recall the following definitions:

Definition. Take two vectors (x1, . . . xn), (y1, . . . yn) ∈ Rn. Their dot product is simply
the sum

x1y1 + x2y2 + . . . xnyn.

Alternately, you can prove that the quantity above is also equal to the product

||~x|| · ||~y|| cos(θ),

where θ is the angle between ~x and ~y.

Definition. Given two vectors ~v, ~w ∈ Rn, we say that these two vectors are orthogonal if
their dot product ~v · ~w = 0. Note that geometrically, if both of these vectors have nonzero
length, this can only happen if the cosine of the angle between these two vectors is zero:
i.e. if these two vectors meet at a right angle!

With these definitions restated, it is not hard to check that an eigenvector (ϕx, x) for ϕ
and an eigenvector (− y

ϕ , y) for − 1
ϕ are orthogonal: we just calculate

(ϕx, x) · (− y
ϕ
, y) = −xy + xy = 0.

2This property emphatically does not hold for normal matrices. I.e. NEVER ever write something like[
a b
c d

]3
=

[
a3 b3

c3 d3

]
on a test or quiz, because it is made of lies and will result in you getting no points and

a lot of red ink.
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Why do we care? Well: notice that if we look at the product[
ϕx x
− y
ϕ y

]
·
[
ϕx − y

ϕ

x y

]
=

[
(ϕx, x) · (ϕx, x) (ϕx, x) · (− y

ϕ , y)

(− y
ϕ , y) · (ϕx, x) (− y

ϕ , y) · (− y
ϕ , y)

]
,

we get that the upper-right and bottom-left entries are 0, because those vectors are orthog-
onal! Therefore, we have that this product is[

ϕx x
− y
ϕ y

]
·
[
ϕx − y

ϕ

x y

]
=

[
ϕ2x2 + x2 0

0 y2

ϕ2 + y2

]
.

So, in particular, if we wanted to make this product the identity matrix, we could just pick
x, y such that

x2(1 + ϕ2) = 1 ⇐ x =
1√

1 + ϕ2

y2(1 +
1

ϕ2
) = 1 ⇐ y =

1√
1 + 1

ϕ2

=
ϕ√

1 + ϕ2
.

In other words: we have just calculated

[
ϕx − y

ϕ

x y

]−1
for free! In the case where we set

x, y as above, it’s just the transpose of this matrix: i.e.

[
ϕx x
− y
ϕ y

]
!

So: we’ve just proven the following formula:[
1 1
1 0

]k
=

 ϕ√
1+ϕ2

− 1√
1+ϕ2

1√
1+ϕ2

ϕ√
1+ϕ2

 · [ϕk 0
0 (− 1

ϕ)k

]
·

 ϕ√
1+ϕ2

1√
1+ϕ2

− 1√
1+ϕ2

ϕ√
1+ϕ2


=

 ϕ√
1+ϕ2

− 1√
1+ϕ2

1√
1+ϕ2

ϕ√
1+ϕ2

 ·
 ϕk+1√

1+ϕ2

ϕk√
1+ϕ2

−
(− 1

ϕ
)k√

1+ϕ2

ϕ(− 1
ϕ
)k√

1+ϕ2


=

 ϕk+2+(− 1
ϕ
)k

1+ϕ2

ϕk+1−ϕ(− 1
ϕ
)k

1+ϕ2

ϕk+1−ϕ(− 1
ϕ
)k

1+ϕ2

ϕk+ϕ2(− 1
ϕ
)k

1+ϕ2

 .
If we multiply the numerator and denominator in each fraction by 1

ϕ , we get
ϕk+1−(− 1

ϕ
)k+1

1
ϕ
+ϕ

ϕk−(− 1
ϕ
)k

1
ϕ
+ϕ

ϕk−(− 1
ϕ
)k

1
ϕ
+ϕ

ϕk−1−(− 1
ϕ
)k−1

1
ϕ
+ϕ

 .
We do this because

ϕ+
1

ϕ
=

1 +
√

5

2
+

2

1 +
√

5
=

1 +
√

5

2
− 1−

√
5

2
=
√

5,
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which allows us to simplify the above into

1√
5

[
ϕk+1 − (− 1

ϕ)k+1 ϕk − (− 1
ϕ)k

ϕk − (− 1
ϕ)k ϕk−1 − (− 1

ϕ)k−1

]
.

Whew! Ok. In the end, we’ve finally proven the following theorem:

Theorem. [
1 1
1 0

]k
=

1√
5

[
ϕk+1 − (− 1

ϕ)k+1 ϕk − (− 1
ϕ)k

ϕk − (− 1
ϕ)k ϕk−1 − (− 1

ϕ)k−1

]
.

As a particular consequence, we have[
1 1
1 0

]k
·
[
f1
f0

]
=

[
1 1
1 0

]k
·
[
1
0

]
=

1√
5

[
ϕk+1 − (− 1

ϕ)k+1

ϕk − (− 1
ϕ)k

]
.

In other words, we have

fk+1 =
ϕk+1 − (− 1

ϕ)k+1

√
5

.

This is exactly what we wanted! A way to calculate the Fibonacci numbers quickly, without
having to calculate everything else on the way. Success!

2 Eigenvalues and Graphs

So: how can we use eigenvalues to study graphs? Moreover, why would we want to use
eigenvalues to study graphs? In past classes, for example, we already came up with com-
pletely reasonable ways to study graphs with linear algebra:

Definition. Given a graph G with vertex set {1, . . . n}, we define its adjacency matrix
AG as the following n× n matrix:

A(i, j) =

{
1, {i, j} ∈ E(G),
0, otherwise.

.

For reference, we calculate a few easy-to-find adjacency matrices:

Example. 1. The graph Kn has adjacency matrix with 0’s on the diagonal and 1’s
everywhere else: 

0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0
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2. The empty graph Kn’s adjacency matrix is identically 0:
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


3. Enumerate the vertices of the cycle graph Cn as {1, 2, . . . n} and its edges as {{i, i+1} :

1 ≤ i ≤ n}. Then, its adjacency matrix has ones as depicted below:

0 1 0 0 . . . 1
1 0 1 0 . . . 0
0 1 0 1 . . . 0

0 0 1 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 1 0


So: we have these graphs, and we’ve turned them into matrices. How can we use these

matrices to get back information about these graphs?
One quick application that we studied in the past is counting walks on a graph! We

review this application here, in case you forgot / want something to use as a warmup!

2.1 Applications of the Adjacency Matrix: Counting Paths / Walks

Suppose we have a graph G on n vertices, and two nodes i, j ∈ V (G). How do we count all
of the walks3 of length k from i to j?

Well: let’s limit ourselves to just walks of length 1. Then, there is just one walk of
length 1 if there is an edge connecting i and j, and no walks otherwise. What about walks
of length 2? Well: any walk of length two will have to connect i to some vertex v, and then
connect v to j: i.e. it’s the sum

n∑
v=1

isEdge(i, v) · isEdge(v, j).

But wait! We’ve defined these “isEdge” functions earlier – specifically, we defined the
adjacency matrix AG of G in such a way that aij = 1 whenever there is an edge from i to j,
and 0 otherwise. So, in this notation, we have that the number of walks from i to j is just

n∑
v=1

aiv · avk,

3A walk of length n from vertex i to vertex j is a sequence P = (i, {i, x1}, x1, {x1, x2}, . . . {xn, j}, j).

13



which we can recognize as the dot product

[
ai1 ai2 . . . ain

]
·


a1j
a2j
. . .
anj

 .
But this is just the dot product of the i-th row and the j-th row of AG! So, we’ve just

proven the following:

Proposition 1. Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A.
Then the (i, j)-th entry of A2 denotes the number of walks of length 2 from i to j.

We can easily generalize this to walks of length k:

Theorem 2. Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A. Then
the (i, j)-th entry of Ak denotes the number of distinct walks of length k from i to j.

Proof. As discussed above, this is trivially obvious for k = 1.
We proceed by induction on k. Suppose that we know that the entries of Ak correspond

to the number of walks of length k from i to j. Given i and j, how can we find all of the
walks of length k + 1 from i and j? Well: any walk of length k + 1 from i to j can be
described as a walk from i to some vertex v of length k, and then a walk of length 1 from
v to j itself! So, if we just simply use the summation trick we used before, we can see that

numberOfWalksk+1(i, j) =

n∑
v=1

numberOfWalksk(i, v) · isEdge(v, j)

= (i, j)− th entry of AkG ·AG
= (i, j)− th entry of Ak+1

G .

As a quick corollary, we have the following:

Corollary 3. Suppose G is a graph with vertex set {1, . . . n} with adjacency matrix A. The
number of distinct triangles4 (v1, v2, v3) contained within G is tr(A3)/6.

Proof. A triangle with a fixed starting point and order in which to visit its vertices is
precisely a closed walk of length 3. There are three possible starting points (v1, v2, v3) and
two possible orientations (clockwise, counterclockwise) in which to traverse any such closed
walk; therefore, the number of triangles is just 1/6-th of the number of closed walks on a
graph of length 3.

But the number of closed walks on a graph of length 3 is just the sum over all v ∈ V (G)
of the closed length-3 walks starting at v: i.e. the sum of the diagonal entries in A3, which
is (by definition) tr(A3).

4A triangle in G is a triple (v1, v2, v3) where all of the edges {v1, v2}, {v2, v3}, {v3, v1} are contained
within G.
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2.2 Adjacency Matrices and Isomorphism

To really work with graphs, though, we need to consider them “up to isomorphism” – i.e.
we want to think of the Petersen graph as just anything with the same vertex-edge relations
as the Petersen graph, and not care so much about the labeling of its vertices. However,
adjacency matrices care very much about the labeling of our vertices: i.e. for the two
graphs below,

despite the fact that they’re both “pentagons,” their adjacency matrices are quite different:

AG1 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 , AG2 =


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0


This is . . . troublesome. If we’re going to use linear algebra to study our graphs, getting

different results whenever we label our graph differently is going to give us no end of trouble.
So: can we say anything about the relation between these matrices at all?

Thankfully, there is! To say precisely what it is, we need the following definition:

Definition. A n× n matrix P whose entries are all either 0 or 1 is called a permutation
matrix if P has exactly one 1 in each of its rows and columns. For example, the following
matrix is a permutation matrix: 

0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0


The reason we call this a permutation matrix is because multiplying a vector v on the left
by P “permutes” v’ entries! For example

0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 ·


v1
v2
v3
v4
v5
v6

 =



v2
v6
v1
v5
v4
v3
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Given a permutation σ : {1, . . . n} → {1, . . . n}, we will sometimes write Pσ to denote the
permutation matrix such that P (v1, . . . vn) = (vσ(1), . . . vσ(n)). It bears noting that every
permutation matrix P can be expressed as Pσ for some permutation σ, by just tracking
where it sends a generic vector (v1, . . . vn).

We first note the following properties of permutation matrices:

Proposition 4. If P is a n × n permutation matrix with associated permutation σ, then
(v1, . . . vn) · P = (vσ−1(1), . . . vσ−1(n)).

Proof. On the HW!

Proposition 5. If P is a n × n permutation matrix with associated permutation σ, then
P−1 is also a permutation matrix with associated permutation σ−1 (and furthermore is equal
to P T .)

Proof. On the HW!

Given this, we can prove the following remarkably useful fact about adjacency matrices
of isomorphic graphs:

Proposition 6. If G1 and G2 are a pair of isomorphic graphs with adjacency matrices
A1, A2, then A1 and A2 are conjugate via a permutation matrix P : i.e.

A2 = PA1P
−1.

Proof. Suppose that G1 and G2 are isomorphic graphs, both with vertex set {1, . . . n}. Then
there is some permutation σ of {1, . . . n} that realizes this isomorphism (i.e. such that (i, j)
is an edge in A1 iff (σ(i), σ(j)) is an edge in A2.)

Let P be the associated permutation to this map σ; then, we have that

• PA1 is the matrix where we’ve taken each column of A1 and permuted its entries
according to σ : in other words, PA1 is A1 if we permute its rows by σ.

• Similarly, A1P
−1 is the matrix where we permute A1’s columns by (σ−1)−1 = σ, by

our earlier two lemmas.

• By combining these two results, PA1P
−1 is the matrix where we permute A1’s rows

by σ, and then permute the resulting matrices’ columns by σ again!

What does this mean? Well: we’ve started by taking any point (i, j) in A1, and have
sent it to (σ(i), σ(j)). But this means that we’ve sent the indicator function for the edge
(i, j) to the location (σ(i), σ(j))! In other words, we’ve sent A1 to A2: i.e. we’ve proven
A2 = PA1P

−1, as claimed.

One remarkable consequence of this is the following corollary:

Corollary 7. If G1 and G2 are isomorphic graphs, their adjacency matrices A1 and A2

have the same set of eigenvalues (counting multiplicity.)
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Proof. As proven above, if G1 and G2 are a pair of isomorphic graphs with adjacency
matrices A1, A2, then A1 and A2 are conjugate via a permutation matrix P : i.e.

A2 = PA1P
−1.

So: take any eigenvector ~v of A1, with eigenvalue λ. Notice that

A2(P~v) = PA1P
−1(P~v) = PA1~v = Pλ~v = λ(P~v);

in other words, P~v is an eigenvector for A2 with the same eigenvalue! So we’ve proven that
any eigenvalue of A1 must be an eigenvalue of A2.

The same logic can be reversed; if we multiply A2 on the left and right by P−1, P
respectively, we get

P−1A2P = A1.

Using the same logic as before, we can show that if ~v is an eigenvector for A2 with
eigenvalue λ, then

A1 = (P−1~v) = P−1A2P (P−1~v) = P−1A2~v = P−1λ~v = λ(P−1~v),

and therefore that P−1~v is an eigenvector for A1 with eigenvalue λ. So, in particular, any
eigenvalue of A2 must be an eigenvalue of A1; this completes our proof!

This motivates us to make the following definition:

Definition. The spectrum of a graph G is the set of all of AG’s eigenvalues, counted with
multiplicity. For example, we say that the empty graph on 3 vertices, K3, has spectrum
{0, 0, 0}, where by 03 we mean that it has the eigenvalue 0 repeated three times. We will
sometimes denote this as {03}, for shorthand; it’s somewhat confusing notation, but also
standard/something you’ll see in the literature.

Great! We have eigenvalues, and moreover have demonstrated that eigenvalues of any
two graphs are isomorphic; i.e. the spectrum of a graph is an invariant under isomorphism,
and is therefore something that might be useful! However, we currently, um, don’t have
any tools for calculating eigenvalues.

Let’s fix that.

3 The Determinant

There are many ways to define the determinant of a matrix. We list several here!
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3.1 Definitions of the Determinant: Permutations

First, recall the following definitions and theorems about permutations of {1, . . . n}:

Definition. A permutation of the set {1, . . . n} is any ordered way to write down the
symbols {1, . . . n}. For example, the collection of all permutations of the string (1, 2, 3) is
the set

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

Theorem. Take any permutation. We claim that it can be created by the following process:

1. Start with the n elements {1, 2, 3, . . . n}.

2. Repeatedly pick pairs of elements in the permutation we have, and swap them.

3. By carefully choosing the pairs in step 2 above, we can get to any other permutation.

The total number of swaps used above is called the signature of that permutation. For
example, the permutation (2, 3, 4, 1) has signature sgn((2, 3, 4, 1)) = 3, because

(1, 2, 3, 4)
switch 1,2−−−−−−→ (2, 1, 3, 4)

switch 1,3−−−−−−→ (2, 3, 1, 4)
switch 1,4−−−−−−→ (2, 3, 4, 1).

A given permutation can have different signatures; for example, we could have written the
above with five swaps, by simply taking the above set of three swaps and then switching
1 and 3 back and forth twice (as swapping two numbers twice doesn’t change anything.)
However, we do have the following theorem about the signature of the permutation, which
you studied in the fall quarter:

Theorem. Take any permutation π. Suppose that π can be written as a product of t
transpositions in one way, and of s transpositions in another way. Then s ≡ t mod 2.

In particular, this means that for any permutation π, the quantity

(−1)sgn(π)

is well-defined; i.e. it’s 1 for any permutation that can be created with an even number of
swaps, and -1 for a permutation that can be created with an odd number of swaps. We use
this in the determinant definitions below!

Definition. Let A be a n× n matrix, of the forma11 . . . a1n
...

. . .
...

an1 . . . ann


The determinant of A, denoted det(A), is the following object:

det(A) =
∑
π∈Sn

(−1)sgn(π) · a1,π(1) · a2,π(2) · . . . · an,π(n).
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For example, for 3× 3 matrices, this is the sum

(−1)sgn((1,2,3)) · a11a22a33 + (−1)sgn((1,3,2)) · a11a23a32 + (−1)sgn((2,1,3)) · a12a21a33
+(−1)sgn((2,3,1)) · a12a23a31 + (−1)sgn((3,1,2)) · a13a21a32 + (−1)sgn((3,2,1)) · a13a22a31,

which if you calculate the signatures is just

(−1)0 · a11a22a33 + (−1)1 · a11a23a32 + (−1)1 · a12a21a33
+(−1)2 · a12a23a31 + (−1)2 · a13a21a32 + (−1)1 · a13a22a31.

This is not the only definition of the determinant! There is also a recursive definition,
which we give here:

3.2 Definitions of the Determinant: Cofactor Expansion

Definition. Let A be a n × n matrix. Given a row i and a column j, let Aij denote the
n− 1×n− 1 matrix formed by deleting the i-th row and j-th column of A; we call this the
cofactor matrix of A corresponding to (i, j).

We can define the determinant of A as the following sum:

det(A) =
n∑
i=1

(−1)i+1a1i det(A1i).

For example, for a 3× 3 matrix A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, this is just

a11 · det

([
a22 a23
a32 a33

])
− a12 · det

([
a21 a23
a31 a33

])
+ a13 · det

([
a21 a22
a31 a32

])
.

Neither of these two definitions, however, is one that I particularly like. Instead, I’m a
pretty big fan of the next two definitions:

3.3 Definitions of the Determinant: Elementary Matrices

Much like how natural numbers can all be expressed as products of primes, matrices can be
expressed as products of certain sorts of “elementary” matrices! We define these matrices
here:

Definition. There are three kinds of elementary matrices:

1. The first type of matrix, Emultiply entry k by λ, is the matrix corresponding to the linear
map that multiplies its k-th coördinate by λ and does not change any of the others.
Specifically, it’s the matrix corresponding to the linear map

(x1, x2 . . . xn) 7→ (x1, x2, . . . xk−1, λxk, xk+1, . . . xn).
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This corresponds to the following matrix:

Emultiply entry k by λ =



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 λ 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the
value at (k, k), which is λ.

2. The second kind of matrix, Eswitch entry k and entry l, corresponds to the linear map
that swaps its k-th coördinate with its l-th coördinate, and does not change any of
the others. Specifically, it’s the matrix corresponding to the linear map

(x1, x2 . . . xn) 7→ (x1, x2, . . . xk−1, xl, xk+1, . . . xl−1, xk, xl+1, . . . xn).

This corresponds to the following matrix:

Eswitch entry k and entry l =



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1 . . . 0
0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 1


You can create this matrix by starting with a matrix with 1’s down its diagonal and
0’s elsewhere, and switching the k-th and l-th columns.

3. Finally, the third kind of matrix, Eadd λ copies of entry k to entry l, for k 6= l, corresponds
to the linear map that adds λ copies of its k-th coördinate to its l-th coördinate and
does not change any of the others. This corresponds to the following matrix:

Eadd λ copies of entry k to entry l =



1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1 0 . . . 0
0 . . . λ 0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 1
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This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the
value in row l, column k, which is λ.

These elementary matrices do what their names suggest:

Theorem 8. Take any n × n matrix A. Suppose that we are looking at the composition
E◦A, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• if E = Emultiply entry k by λ, then E◦A would be the matrix A with its k-th row multiplied
by λ.

• if E = Eswitch entry k and entry l, then E ◦A would be the matrix A with its k-th and l-th
rows swapped, and

• if E = Eadd λ copies of entry k to entry l, then E ◦ A would be the matrix A with λ copies
of its k-th row added to its l-th row.

There is a similar version of this theorem for columns:

Theorem 9. Take any n × n matrix A. Suppose that we are looking at the composition
A◦E, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• if E = Emultiply entry k by λ, then A ◦ E, would be the matrix A with its k-th column
multiplied by λ.

• if E = Eswitch entry k and entry l, then A ◦ E, would be the matrix A with its k-th and
l-th columns swapped, and

• if E = Eadd λ copies of entry k to entry l, then A ◦E, would be the matrix A with λ copies
of its l-th column added to its k-th column.

These theorems are not hard to check; verify them for yourself! Instead of proving this,
I want to look at the claim we made about elementary matrices above:

Theorem. Let A be an arbitrary n × n matrix. Then we can write A as the product of
elementary matrices.

Proof. So: notice by the two theorems above, multiplying by elementary matrices lets us
perform the following operations on a matrix A:

• Scaling any row or column by a constant.

• Switching any pair of rows or any pair of columns.

• Adding any multiple of any row to any other row, or adding any multiple of any
column to any other column.

So: to do this process, first do the following:
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1. Take the collection R of all of A’s rows.

2. If this set is linearly independent, halt.

3. Otherwise, there is some row that shows up in this collection that is a combination of
the other rows. Get rid of that row, and return to (2).

This creates a subset R′ of A’s rows that is linearly independent. Furthermore, it creates
a subset from which we can create any of A’s rows, even the ones we got rid of! This is
because we only got rid of rows that were linearly dependent on the earlier ones; i.e. we
only got rid of rows that we can make with the rows we kept!

So: all we need to do now is make B into a matrix that has all of the rows in this subset
R′! If we can do this, then we can just do the following:

• Multiply all of the other rows in B by zero.

• Now, using each all-zero row as an empty slot, create each of the rows from A that
we don’t have by combining the rows from R′. We can do this because all of the
remaining rows in A were linear combinations of the R′ rows!

• Finally, rearrange the rows using swaps so that our matrix is A (and not just a matrix
with the same rows, but in some different order.)

This is our plan! We execute the plan as below:

1. We start with B equal to the n × n identity matrix. Note that B’s rows span all of
Rn

2. If all of the rows in R′ currently occur as rows of B, stop!

3. Otherwise, there is a row ~ar in R′ that is not currently a row in B.

4. If the rows of B span R, then specifically there is a combination of the rows of B that
yields ~ar.

5. Furthermore, this vector is not just a combination of rows in R′, because R′ is a linearly
independent set. Therefore, in any linear combination of B’s rows that creates ~ar,
there is some row of B that is not one of the R′ rows that’s used in creating ~ar.

6. So: take the linear combination

a1 ~br1 + . . . an ~brn = ~ar,

and let ~brk denote the row that occurs above that’s not one of the R′ rows and that
has ak 6= 0.
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7. Take B, and multiply it by

all of the values ai, with i 6=k︷ ︸︸ ︷
add a1 copies of

r1 to rk︷ ︸︸ ︷
...

. . . a1 . . .
...

 ·
add a2 copies of

r2 to rk︷ ︸︸ ︷
...

. . . a2 . . .
...

 · . . . ·
add an copies of

r2 to rk︷ ︸︸ ︷
...

. . . an . . .
...

 ·
multiply row rk

by ak︷ ︸︸ ︷
...

. . . ak . . .
...

 ·B
This takes the k-th row of B and fills it with the linear combination that creates ~ar!
So this means that the row ~ar is now in B.

8. Also, notice that the rows of B all still span Rn! This is because

a1 ~br1 + . . . an ~brn = ~ar

⇒ ~brk =
1

ak

 a1 ~br1 + . . . an ~brn︸ ︷︷ ︸
terms that aren’t ak ~brk

+~ar

 .

Therefore, we have that the old k-th row ~brk is in the span of the new B’s rows! As
well, because none of the other rows changed, those rows are all still in the span as
well. Therefore, because the new B’s rows contain the old B’s rows in their span,
they must span Rn!

9. Go to (2), and repeat this process!

The result of this process is a matrix B that contains all of the rows in R′, which is what
we wanted (because we can make A out of this!) So we’re done.

To illustrate this argument, we run another example:

Example. Consider the matrix

A =

0 1 2
4 −1 0
2 0 1


Write A as a product of elementary matrices.

Proof. We start, as directed in the proof, by finding a subset of A’s rows that is linearly in-
dependent. We can tell at the start that the collection of all rows is not linearly independent,
because

1(0, 1, 2) + 1(4,−1, 0)− 2(2, 0, 1) = (0, 0, 0).

However, we also have that the pair

(0, 1, 2), (2, 0, 1)
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is linearly independent, because

α(0, 1, 2) + β(2, 0, 1) = (0, 0, 0)⇒ α, β = 0,

and that these two vectors contain the third in their span.
So the set R′ from our discussion above is just these two vectors!
Set B equal to the 3 × 3 identity matrix. We start by picking a vector from R′ – let’s

choose ~ar = (0, 1, 2).
We want to multiply B by elementary matrices so that it has (0, 1, 2) as one of its rows.

To do this, we first write (0, 1, 2) as a combination of B’s rows:

0(1, 0, 0) + 1(0, 1, 0) + 2(0, 0, 1) = (0, 1, 2).

We now pick a row from B whose coefficient above is nonzero, and that isn’t a row in R′.
For example, the coefficient of the second row above is 1, and the second row (0, 1, 0) is not
in R′: so we can pick the second row.

We now turn the second row into this ~ar = (0, 1, 2), by using the linear combination we
have for (0, 1, 2) above:

add 2 copies of
r3 to r2︷ ︸︸ ︷1 0 0

0 1 2
0 0 1

 ·
add 0 copies of

r1 to r2︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
multiply row r2

by 1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 0 0

0 1 0
0 0 1

 =

1 0 0
0 1 2
0 0 1

 .
Success! We repeat this. We choose another row from R′, specifically ~ar = (2, 0, 1). We

write (2, 0, 1) as a combination of B’s rows:

2(1, 0, 0) + 0(0, 1, 2) + 1(0, 0, 1) = (2, 0, 1).

We now pick a row from B whose coefficient above is nonzero, and that isn’t a row in
R′; for example, the first row works here.

We now turn the first row into this ~ar = (2, 0, 1), by using the linear combination we
have for (2, 0, 1) above:

add 1 copies of
r3 to r1︷ ︸︸ ︷1 0 1

0 1 0
0 0 1

 ·
add 0 copies of

r2 to r1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
multiply row r1

by 2︷ ︸︸ ︷2 0 0
0 1 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 0 0

0 1 2
0 0 1

 =

2 0 1
0 1 2
0 0 1

 .
We are now out of rows of R′! This brings us to the second stage of our proof: multiply

all of the remaining rows that aren’t R′ rows by 0.

multiply row r3
by 0︷ ︸︸ ︷1 0 0

0 0 1
0 1 0

 ·
the matrix B︷ ︸︸ ︷2 0 1

0 1 2
0 0 1

 =

2 0 1
0 1 2
0 0 0

 .
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Now we are at the last stage of our proof: combine the R′ rows to create whatever rows in
A are left, in these “blank” all-zero rows!

Specifically, we take the one row of A that’s left: (4,−1, 0). As we noted before, we can
write

(4,−1, 0) = 2(2, 0, 1)− 1(0, 1, 2).

Therefore, we have

add 2 copies of
r1 to r3︷ ︸︸ ︷1 0 0

0 1 0
2 0 1

 ·
add −1 copies of

r2 to r3︷ ︸︸ ︷1 0 0
0 1 0
0 −1 1

 ·
the matrix B︷ ︸︸ ︷2 0 1

0 1 2
0 0 0

 =

2 0 1
0 1 2
4 −1 0

 .
So we have a matrix with the same rows as A! Finally, we just shuffle the rows of B to get
A itself:

switch rows
r3 and r2︷ ︸︸ ︷1 0 0
0 0 1
0 1 0

 ·
switch rows
r2 and r1︷ ︸︸ ︷0 1 0
1 0 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷2 0 1
0 1 2
4 −1 0

 =

0 1 2
4 −1 0
2 0 1

 = A.

This is. . . not a determinant definition yet. We can make it one here:

Definition. Take any n × n matrix A. Write A as a product E1 · . . . · En of elementary
matrices. Let k denote the number of “swap” matrices we used in writing this product, and
let λ1, . . . λm denote the m “scale” elementary matrices that occur in writing this product.
Then

det(A) = (−1)k
m∏
i=i

λi.

I care about this definition mostly because it lets us make one last definition of the
determinant; it’s volume!

3.4 Definitions of the Determinant: Volume

To make this rigorous, we start with the following definition:

Definition. Take two vectors (x1, . . . xn), (y1, . . . yn) ∈ Rn. We say that these two vectors
are orthogonal if their dot product is 0. Alternately, we can say that two vectors are
orthogonal if the angle θ between them is ±π/2; this is a consequence of a theorem we
proved in class, where we showed

~x · ~y = ||~x|| · ||~y|| cos(θ).

(Recall that ||~x|| is the length of the vector ~x: i.e. the length of (1, 2, 3) is simply the
quantity

√
12 + 22 + 32 =

√
14.)
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Given this definition, consider the following question:

Question 10. Suppose that we have a collection of vectors W = { ~w1, . . . ~wk}, and some
other vector ~v. Is there some way we can write ~v as the sum of two vectors ~r + ~p, where ~r
is orthogonal to all of the vectors in W , while ~p is contained in the span of W?

We can visualize this with the following picture. Here, we describe the red vector ~v as
the sum of two gold vectors, one of which is orthogonal to ~w1 and ~w2, and the other of
which is a linear combination of ~w1 and ~w2.

w1

w2

p

r v

We go through an answer to this in two parts. First, make the following definition:

Definition. Let ~v, ~w be a pair of vectors in Rn. The projection of ~v onto ~w, denoted
proj(~v onto ~w), is the following vector:

• Take the vector ~w.

• Draw a line perpindicular to the vector ~w, that goes through the point ~v and intersects
the line spanned by the vector ~w.

• proj(~v onto ~w) is precisely the point at which this perpindicular line intersects ~w.

We illustrate this below:

w
v

proj(v	onto	w)θ

In particular, it bears noting that this vector is a multiple of ~w.
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A formula for this vector is the following:

proj(~v onto ~w) =
~v · ~w
||~w||2

· ~w.

To see why, simply note that the vector we want is, by looking at the above picture,
something of length cos(θ) · ||~v||, in the direction of ~w. In other words,

proj(~v onto ~w) = cos(θ) · ||~v|| · ~w

||~w||
.

Now, use the angle form of the dot product to see that because ~w · ~v = ||~w||||~v|| cos(θ), we
have

proj(~v onto ~w) =
~v · ~w
||~v||||~w||

||~v|| ~w

||~w||
.

Canceling the ||~v||’s gives us the desired formula.
Using this, you can define the “orthogonal part” of ~v over ~w in a similar fashion:

Definition. Let ~v, ~w be a pair of vectors in Rn. The orthogonal part of ~v over ~w, denoted
orth(~v onto ~w), is the following vector:

orth(~v onto ~w) = ~v − proj(~v onto ~w)

It bears noting that this vector lives up to its name, and is in fact orthogonal to ~w. This
is not hard to see: just take the dot product of ~w with it! This yields

~w · (~v − proj(~v onto ~w)) = ~w · ~v − ~w · proj(~v onto ~w)

= ~w · ~v − ~w · ( ~v · ~w
||~w||2

· ~w)

= ~w · ~v − ~v · ~w
||~w||2

(~w · ~w)

= ~w · ~v − ~v · ~w
||~w||2

(w2
1 + . . . w2

n)

= ~w · ~v − ~v · ~w
||~w||2

(||~w||2)

= 0.

Therefore, in the case where { ~w1, . . . ~wn} is a set containing just one vector ~w, we’ve
answered our problem! We can write

~v = proj(~v onto ~w) + orth(~v onto ~w),

where proj is a multiple of ~w and orth is orthogonal to ~w!
The rough idea for why we care about orthogonality now is because it’s the easiest

way to understand the idea of n-dimensional volume! Specifically: suppose you have a
parallelogram spanned by the two vectors ~v, ~w.
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w

v

What’s the area of this parallelogram? Well, it’s the length of the base times the
height, if you remember your high-school geometry! But what are these two quantities?
Well: the base has length just given by the length of ~w. The height, however, is precisely
the kind of thing we’ve been calculating in this set! Specifically: suppose that we can write
~v as the sum ~p+~r, where ~p is some multiple of ~v and ~r is orthogonal to ~w. Then the length
of ~r is precisely the height!

r

p

w

v

Therefore, to find the area here, we just need to multiply the length of ~r and the length of
~w together.

For three dimensions, the picture is similar. Suppose you want to find the volume of a
parallelepiped — i.e. the three-dimensional analogue of a parallelogram – spanned by the
three vectors ~v, ~w1, ~w2.

w1

w2

v

What’s the volume of this parallelotope? Well, this is not much harder to understand
than the two-dimensional case: it’s just the area of the parallelogram spanned by the two
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vectors ~w1, ~w2 times the height! In other words, suppose that we can write ~v = ~r + ~p,
for some vector ~p in the span of ~w1, ~w2 and some vector ~r orthogonal to ~w1, ~w2. Then the
length of this vector ~r is, again, precisely the height!

w1

w2

r
v

This process generalizes to n dimensions: to find the volume of a n-dimensional par-
allelotope spanned by n vectors ~w1, . . . ~wn, we just start with ~w1, and repeatedly for each
~w2, ~wn, find the “height” of each ~wi over the set ~w1, . . . ~wi−1 by doing this “write ~wi as
a projection ~p onto { ~w1, . . . ~wi−1}, plus an orthogonal bit ~r, whose length is the height”
trick. By taking the product of all of these heights, we get what we would expect to be
the n-dimensional volume of the parallelotope! (In fact, it’s kinda confusing just what n-
dimensional volume even means, so if you want you can take this as the definition of
volume for these kinds of objects in n-dimensional space.)

This gives us one last way to define the determinant:

Definition. Let [0, 1]n denote the set {(x1, . . . xn) | xi ∈ [0, 1]}. Look at the set A([0, 1]n),
defined as {A~x | ~x ∈ [0, 1]n}; geometrically, if you draw this out, you’ll see that it’s a
parallelotope spanned by the columns of A!

We define the “positive” determinant of A as the volume of this parallelotope: i.e.

|det(A)| = vol(A([0, 1]n)).

The determinant (i.e. where we don’t have absolute values) is just this quantity times
(−1)k, where k is the number of swaps needed to write A with a product of elementary
matrices.

3.5 Properties of the Determinant

The determinant satisfies many many properties! We list some here:

1. All of these definitions are equivalent; i.e. they all describe the same object.

2. For any two n× n matrices A,B, det(AB) = det(A) det(B).

3. For any matrix A, if AT denotes the transpose of A (i.e. AT (i, j) = A(j, i)), then
det(AT ) = det(A).
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4. For any matrix A, the determinant is zero if and only if the rows of A are linearly
dependent if and only if the columns of A are linearly dependent.

5. For any matrix A, λ is an eigenvalue of A if and only if A − λI has determinant 0.
(Notice that det(A−λI) is actually a polynomial in λ, if we think of all of the entries
in A as constants: we call this the characteristic polynomial of A.)

6. For any matrix A, the determinant is unchanged if we add multiples of one row in
A to another row in A, gets multiplied by −1 if we swap two rows in A, and gets
multipled by λ if we scale any row by λ. (The same holds for columns.)

7. Suppose that a n × n matrix A has n eigenvalues, counted with multiplicity. Then
the determinant of A is the product of its eigenvalues.

We leave the proofs of these properties for the homework!
There is also one fairly sizeable theorem, the spectral theorem, that we need and

leave for the homework as well; either prove this (hard, but doable!) or decide to accept it
on faith!

Theorem. (Spectral theorem.) Suppose that A is a real-valued symmetric n × n matrix.
Then there is a basis for Rn consisting of orthogonal eigenvectors for A.

In particular, if G is a graph on n vertices, the spectrum of G contains n values, counted
with multiplicity.

We use this to calculate some actual eigenvalues in the next section:

4 Using Determinants to Calculate Spectra

Example. The spectrum of Kn: The adjacency matrix of Kn is
0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0

 =


1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1

− In.

Consequently, its characteristic polynomial has roots wherever the rows of
−λ 1 1 . . . 1
1 −λ 1 . . . 1
1 1 −λ . . . 1
...

...
...

. . .
...

1 1 1 . . . −λ


are linearly dependent, with multiplicity equal to n − (number of linearly independent
rows). What are these roots and multiplicities? Well: when λ = −1, this matrix is the
all-1’s matrix, and thus has only one linearly independent row: so the eigenvalue −1 occurs
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with multiplicity n − 1. This leaves at most one root in the characteristic polynomial for
us to find!

So: when λ = n−1, we have that the sum of all of the rows in our matrix is 0; therefore,
this is also an eigenvalue of our matrix. As we’ve found n eigenvalues, we know that we’ve
found them all, and can thus conclude that the spectrum of Kn is {(n−1)1, (−1)n−1} (where
the superscripts here denote multiplicity, not being raised to a power,) and its characteristic
polynomial is (x− n+ 1)(x+ 1)n−1.

Example. The spectrum of Cn: The adjacency matrix of Cn is

ACn =



0 1 0 0 . . . 1
1 0 1 0 . . . 0
0 1 0 1 . . . 0

0 0 1 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 1 0


.

This . . . is kinda awful. So: let’s be clever! Specifically, let’s consider instead the
directed cycle Dn, formed by taking the cycle graph Cn and orienting each edge {i, i+ 1}
so that it goes from i to i+ 1. This graph has adjacency matrix given by the following:

ADn =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


.

What’s the characteristic polynomial of this matrix? Well: it’s what you get when you
take the determinant

det(ADn − λI) = det





−λ 1 0 0 . . . 0
0 −λ 1 0 . . . 0
0 0 −λ 1 . . . 0

0 0 0 −λ . . . 0
...

...
...

. . .
. . . 1

1 0 0 . . . 0 −λ




.

If we apply the definition of the determinant, we can expand along the top row of this
matrix and write det(ADn − λI) as

− λ · det




−λ 1 0 . . . 0
0 −λ 1 . . . 0

0 0 −λ . . . 0
...

...
. . .

. . . 1
0 0 . . . 0 −λ



− 1 · det




0 1 0 . . . 0
0 −λ 1 . . . 0

0 0 −λ . . . 0
...

...
. . .

. . . 1
1 0 . . . 0 −λ



 .
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The left matrix has determinant equal to the product of its diagonal entries; in general,
any upper-triangular matrix, i.e. one where all of its nonzero entries are on or above the
diagonal (i, i), will have determinant equal to the product of its diagonal entries! (If you
haven’t seen this before, it’s not hard to prove. If you use the property that the determinant
of a matrix is equal to its transpose from the HW, you can see that this claim is equivalent to
proving the same claim for lower-triangular matrices. If you apply the recursive definition
of the determinant here, our claim is proven by simply applying induction!)

The right matrix is a bit trickier: however, if we permute the columns of this matrix
by sending the columns 1, 2, . . . n − 1 to the columns 2, 3, . . . n − 1, 1 we will change the
determinant by (−1)n−2 (as it takes n− 2 swaps to make this n− 1 cycle of columns.) This
gives us the following:

det(ADn − λI) =(−1)nλn − (−1)n−2 det




1 0 . . . 0 0
−λ 1 . . . 0 0

0 −λ . . . 0 0
...

...
. . . 1

...
0 . . . 0 −λ 1



 .

This right matrix now has determinant given by 1, because it is lower-triangular! Therefore,
we’ve shown that

det(ADn − λI) = (λn − 1) · (−1)n.

So: at first, this doesn’t look too useful. It would seem to tell us that the only eigenvalue
is 1; however, you can check pretty easily that 1 is an eigenvalue of this matrix with
multiplicity 1, as for any vector ~x,

ADn~x =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


·



x1
x2
x3
x4
...
xn


=



x2
x3
...

xn−1
xn
x1


.

Therefore, if A~x = 1~x, we have xi = xi+1, for all i; that is, ~x has the form c · (1, 1, 1 . . . 1) for
some constant c. But this means that E1 is a one-dimensional space spanned by (1, 1, . . . 1),
and is thus one-dimensional!

So. Where did all of the other eigenvalues go?
The answer lies in the complex numbers! Specifically: the other roots of (λn−1) are pre-

cisely the n-th roots of unity, i.e. the n distinct numbers 1, e(2πi)/n, e(2πi)2/n, . . . e(2πi)(n−1)/n

such that any of these numbers ζ, when raised to the n-th power, is 1. Furthermore, we
can actually see that each of these eigenvalues ζ has corresponding eigenvector given by
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(1, ζ, ζ2, . . . ζn−1), because

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


·



1
ζ
ζ2

ζ3

...
ζn−1


=



ζ
ζ2

ζ3

ζ4

...
1 = ζn


= ζ ·



1
ζ
ζ2

ζ3

...
ζn−1


.

Turning this into information about Cn is not a difficult thing to do. In particular,
notice that

ADn +ATDn
=



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


+



0 0 0 0 . . . 1
1 0 0 0 . . . 0
0 1 0 0 . . . 0

0 0 1 0
. . . 0

...
...

...
. . .

. . . 1
0 0 0 . . . 1 0



=



0 1 0 0 . . . 1
1 0 1 0 . . . 0
0 1 0 1 . . . 0

0 0 1 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 1 0


= ACn .

Also, notice that all of our eigenvectors for ADn are eigenvectors for ATDn
as well:



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


·



1
ζ
ζ2

ζ3

...
ζn−1


=



ζn−1

1
ζ
ζ2

...
ζn−2


= ζn−1 ·



1
ζ
ζ2

ζ3

...
ζn−1


,

where the last equality is justified by noting that ζn−1ζk = ζnζk−1 = ζk−1.
Consequently, if we plug in (1, ζ, ζ2, . . . ζn−1) to the matrix ACn , we get
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ACn(1, ζ, ζ2, . . . ζn−1) =
(
ADn +ATDn

)
(1, ζ, ζ2, . . . ζn−1)

=





0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0 0 0
. . . 0

...
...

...
. . .

. . . 1
1 0 0 . . . 0 0


+



0 0 0 0 . . . 1
1 0 0 0 . . . 0
0 1 0 0 . . . 0

0 0 1 0
. . . 0

...
...

...
. . .

. . . 1
0 0 0 . . . 1 0







1
ζ
ζ2

ζ3

...
ζn−1



=(ζ + ζn−1)



1
ζ
ζ2

ζ3

...
ζn−1


.

So ζ + ζn−1 is an eigenvalue, for every ζ ∈ {1, e2πi/n, e2πi2/n, . . . , e2πi(n−1)/n}. But
ζ · ζn−1 = ζn = 1; so ζn−1 is the multiplicative inverse of ζ, i.e. 1

ζ = ζn−1!
Multiplicative inverses have some fairly beautiful properties in the complex numbers.

That is, suppose that x+iy is a complex number with ||x+iy|| = 1; that is, with x2+y2 = 1.
Then

(x+ iy)(x− iy) = x2 + y2 = 1;

i.e. the multiplicative inverse of x+ iy is x− iy!
Finally, notice that

e2πik/n = cos(2πk/n) + i sin(2πk/n).

Therefore, for any ζ = e2πik/n, we have Finally, notice that

ζ + ζn−1 = ζ + ζ−1 = cos(2πk/n) + i sin(2πk/n) + (cos(2πk/n) + i sin(2πk/n))−1

= cos(2πk/n) + i sin(2πk/n) + (cos(2πk/n)− i sin(2πk/n))

=2 cos(2πk/n).

This gives us a very nice form for our eigenvalues: for any k ∈ {0, 1, . . . n − 1}, we’ve
proven that 2 cos(2πk/n) is an eigenvalue for ACn ! There are n of these eigenvalues, so we
know that there are no others and that each of these occur with multiplicity 1: i.e.

Spec(Cn) = {2 cos(2πk/n) | k ∈ {0, 1, . . . n− 1}}.

Cool!

So: we can calculate the spectra of various graphs, with varying degrees of effort. Why
do we care? As it turns out, a number of very useful graph properties can be measured by
looking at the spectra! We study this in the following section:
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5 Applications of the Spectra

In our introduction to graph theory course, pretty much the first interesting thing we did
was characterize bipartite graphs. As it turns out, we can do the same thing here in terms
of the spectra:

Proposition 11. If a graph G is bipartite, its spectrum is symmetric about 0; that is, for
any bipartite graph G, λ is an eigenvalue of AG if and only if −λ is.

Proof. Write G = (V1 ∪ V2, E),, where V1 = {1, 2, . . . k} and V2 = {k + 1, k + 2, . . . n}
partition G’s vertices. In this form, we know that the only edges in our graph are from V1
to V2. Consequently, this means that AG is of the form

0 B

BT 0
,

where the upper-left hand 0 is a k × k matrix, the lower-right hand 0 is a n − k × n − k
matrix, B is a (n− (k + 1))× k matrix, and BT is the transpose of this matrix.

Choose any eigenvalue λ and any eigenvector (v1, . . . vk, wk+1, . . . wn) = (v,w). Then,
we have

AG · (v,w) =
0 B

BT 0
·
[

v
w

]
=

[
B ·w
BT · v

]
=

[
λ · v
λ ·w

]
= λ

[
v
w

]
But! This is not the only eigenvector we can make out of v and w. Specifically, notice

that if we multiply AG by the vector (v,−w), we get

AG · (v,−w) =
0 B

BT 0
·
[

v
−w

]
=

[
−B ·w
BT · v

]
=

[
−λ · v
λ ·w

]
= −λ

[
v
−w

]
.

In other words, whenever λ is an eigenvalue of AG, −λ is as well!

As well, one of the next things we studied was how certain key properties (like χ(G))
depended on the maximum degree of the graph, ∆(G). As this provides an upper bound on
the overall density of our graph, it seems like a natural candidate for something to bound
our eigenvalues by. We make this explicit in the following proposition:

Proposition 12. If G is a graph and λ is an eigenvalue of AG, then |λ| ≤ ∆(G).

Proof. Take any eigenvalue λ of AG, and let v = (v1, . . . vn) be a corresponding eigenvector
to λ. Let vk be the largest coördinate in v, and (by scaling v if necessary) insure that
vk = 1.

We seek to show that |λ| ≤ ∆(G). To see this, simply look at the quantity |λ · vk|. On
one hand, we trivially have that this is |λ|.
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On the other, we can use the observation that v is an eigenvector to notice that

|λ · vk| = |(ak1, ak2, . . . akn) · (v1, . . . vn)|

=

∣∣∣∣∣∣
n∑
j=1

akjvj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
n∑
j=1

akjvk

∣∣∣∣∣∣ =

∣∣∣∣∣∣vk
n∑
j=1

akj

∣∣∣∣∣∣
≤ |vk ·∆(G)| = ∆(G).

When is the above bound tight? With many graph properties (like, again, χ(G),)
answering this question is usually difficult. Here, however, it’s actually quite doable, as we
demonstrate in the next proposition:

Proposition 13. A connected graph G is regular if and only if ∆(G) is an eigenvalue of
AG.

Proof. As this is an if and only if, we have two directions to prove.
(⇒:) If G is regular, then each vertex in G has degree ∆(G). This means (amongst

other things) that there are precisely ∆(G) 1’s in every row of AG. Consequently, if we look
at AG · (1, 1, 1 . . . 1), we know that we get the vector (∆(G),∆(G), . . .∆(G)): i.e. ∆(G) is
an eigenvector!

(⇐:) As before, pick an eigenvector v for our eigenvalue ∆(G), let vk be the largest
component of v, and rescale v so that vk = 1. Then, just as before, we have

|∆(G)| = |∆(G) · vk| = |(ak1, . . . akn) · (v1, . . . vn)|

=

∣∣∣∣∣
n∑
i=1

akivi

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

akivk

∣∣∣∣∣ = |vk|

∣∣∣∣∣
n∑
i=1

aki

∣∣∣∣∣ = deg(vk)

≤ ∆(G),

and therefore deg(v) = ∆(G).
But wait! If the above is true, we actually have

|∆(G)| =

∣∣∣∣∣
n∑
i=1

akivi

∣∣∣∣∣ = ∆(G),

and therefore vi is equal to 1 for every i adjacent to k! Therefore, we can repeat the above
argument for every i adjacent to k, and show that the degree of all of these vertices are
also ∆(G). Repeating this process multiple times shows that the degree of every vertex is
∆(G), and therefore that G is regular.
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In the proof above, we actually proved that ∆(G) was an eigenvalue of a connected
graph G if and only if (1, . . . 1) is an eigenvector of AG! In particular, the proof above
shows that it is impossible for any ~v to be an eigenvector for ∆(G) without being a scalar
multiple of (1, . . . 1). This gives us a nice corollary:

Corollary. If ∆(G) is an eigenvalue for AG, then it has multiplicity 1.

Proposition 14. If G is a graph with diameter5 d ∈ N, then AG has at least d+ 1 distinct
eigenvalues.

Proof. First, recall the spectral theorem, which says that (because AG is real-valued and
symmetric) we can find an orthonormal basis for Rn made out of AG’s eigenvectors. Let
~e1, . . . ~en be such a basis of orthonormal eigenvectors, and let the collection of distinct
eigenvalues of AG be θ1, . . . θt.

Examine the product D = (AG−θ1 · I) · (AG−θ2 · I) · . . . (AG−θt · I); specifically, notice
that the order of the θi’s doesn’t matter in this above product, as

(AG − θ1 · I) · (AG − θ2 · I) · . . . (AG − θt · I)

=AtG −

(
n∑
i=1

θi

)
At−1G + . . .+ (−1)t

t∏
i=1

θi · I,

and the θs in each of the coefficients above clearly commute.
What happens when we multiply D on the right by any of these ~eit ’s? Well: if we

permute the (AG − θI)’s around so that (AG − θitI) is the first term, we have

(AG − θi1 · I) · (AG − θi2 · I) · . . . (AG − θit · I) · eit
=(AG − θi1 · I) · (AG − θi2 · I) · . . . · (AG · eit − (θit · I) · eit)
=(AG − θi1 · I) · (AG − θi2 · I) · . . . · 0
=0.

But this means that D sends all of the ~ei’s to 0: i.e. that D sends all of these basis
vectors for Rn to 0! In other words, this forces D = 0.

But what does this mean? Using our expansion above of D into a polynomial, we’ve
just shown that

AtG −

(
n∑
i=1

θi

)
At−1G + . . .+

t∏
i=1

θi · I = 0,

which means that

AtG =

(
n∑
i=1

θi

)
At−1G + . . .−

t∏
i=1

θi · I.

5The diameter of a graph G is the longest distance between any two vertices in a graph.
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What would happen if the diameter d is greater than t − 1? It would mean that there
are two vertices i, j such that d(i, j) = t, at the very least! But this would mean that the
(i, j)-th entry of AtG would be nonzero (as there is a path of length t between them), while
the (i, j)-th entry of AkG would be zero for every k < t (as there are no paths of shorter
length linking them.) But this is impossible, because we’ve written AtG as the sum of these
smaller matrices!

Therefore, this cannot occur: i.e. we have d ≤ t− 1, which is what we wanted to prove.

These properties are great; but they’re not why I wanted to run these lectures. Instead,
this is why I wanted to run this lecture:

6 The Petersen Graph

Just look at it.
. . .
So cool!
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. . .

. . . anything else like it?

6.1 Yes!

What do we mean by “like6?” What properties does the Petersen graph have that we’d like
to find in other graphs?

Well, one nice property it has is that it’s regular: i.e. all of its vertices have degree
3. Furthermore, it’s really regular: if you look at any two adjacent vertices, they have no
neighbors in common, and if you look at any two nonadjacent vertices, they have precisely
one vertex in common.

Because this is such an awesome property, let’s give it a name! Call such graphs strongly
regular graphs (SRGs,) with parameters (n, k, λ, µ), if they have

• n vertices,

• are regular with degree k,

• every pair of adjacent vertices have λ neighbors in common, and

• every pair of nonadjacent vertices have µ neighbors in common.

In this notation, the Petersen graph is a (10, 3, 0, 1)-SRG.
There are a few degenerate cases of SRG’s: we note them here, and recommend that

you check the validity of these claims on your own.

1. If µ = 0, then G is a disjoint union of Kk+1’s.

2. If k = n− 1, then G is Kn; if k = 0, then G is a disjoint union of isolated vertices.

3. If λ = k − 1, then G is a disjoint union of Kk’s.

Apart from these cases, what can we say about these Petersen-like graphs? We study
this in the next section:

6.2 The Integrality Conditions

Strongly regular graphs, as it turns out, are magic. We make this rigorous through the
next three lemmas:

Lemma 15. Suppose that G is a strongly regular graph, with parameters (n, kλ, µ). Then
AG has at most three distinct eigenvalues.

Proof. Consider A2
G. Specifically, consider (A2

G)ij , which we can write as

(ai1, . . . ain) ·

 a1j
...
anj

 =

n∑
i=1

aikakj .

What is this?
6Do we mean “like,” or “like-like?”
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• If i = j, then we have that this is just the number of elements adjacent to vertex i,
which is k because our graph is regular.

• If (vi, vj) is an edge in our graph, then the elements aikakj of this sum are nonzero
precisely where vk is a common neighbor of vi and vj ; so this counts the number of
common neighbors to vi and vj , and is thus λ.

• If (vi, vj) is not edge in our graph, then the elements aikakj of this sum are still
nonzero precisely where vk is a common neighbor of vi and vj ; so this counts the
number of common neighbors to vi and vj , and is thus µ.

So, in other words, we’ve just proven that

A2
G = k · I + λ ·AG + µ ·AG

= k · I + λ ·AG + µ · (J − I −AG)

= (k − µ) · I + (λ− µ) ·AG + µ · J,

where J is the all-1’s matrix.
This looks suspiciously like a quadratic equation! Except, you know, with matrices.

Does this form mean that our matrix can only have three eigenvalues? Well: let’s see!
Recall from earlier in the course that if G is a k-regular graph, then the all-1’s vector is an
eigenvector for its adjacency matrix with eigenvalue k: this is because AG · (1, . . . 1) returns
a vector with entries corresponding to the degrees of the vertices in G. By the spectral
theorem, we know that AG has an orthogonal basis of eigenvectors, and furthermore that
we can pick such a basis that contains (1, . . . 1) as an element.

Choose any other eigenvalue s and let y be its corresponding eigenvector. I claim that
y is orthogonal to the all-1’s vector; and in general that if ~v, ~w are eigenvectors for different
eigenvalues λ, θ then ~v, ~w will be orthogonal.

This is not hard to prove:

Lemma. If A is a n× n symmetric matrix with eigenvector/value pairs ~v, λ and ~w, θ with
λ 6= θ, then ~v is orthogonal to ~w: that is, ~v · ~w = 0.

Proof. This is not too hard to see. Notice that

~v · (A~w) = ~v · (θ ~w) = θ(~v · ~w),

and also that

~w · (A~v) = ~w · (λ~v) = λ(~w · ~v).
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However, by taking the transpose, we can see that

(~w · (A~v))T =

[w1 . . . wn
] a11 . . . a1n

...
. . .

...
an1 . . . ann


v1...
vn



T

=

v1...
vn


T a11 . . . a1n

...
. . .

...
an1 . . . ann


T [
w1 . . . wn

]T
= ~v · (AT ~w),

where we use the property that (AB)T = BTAT (which you may want to prove for the HW
this week!)

But AT = A because A is symmetric; so we actually have shown that ~v · (A~w) =
(~w · (A~v))T . But (~w · (A~v))T = ~w · (A~v), because the quantity in parentheses is a 1 × 1
matrix!

Therefore, we can conclude that θ(~v · ~w) = λ(~v · ~w); this forces ~v · ~w = 0 whenever θ 6= λ.

We use this lemma here on our chosen eigenvector ~y for an eigenvalue 6= k. This
eigenvector by the above argument is orthogonal to (1, . . . 1), as this is an eigenvector for
k; so in particular we have J~y = ~0, as each column of J is just an all-1’s vector! This tells
us that

A2
Gy = ((k − µ) · I + (λ− µ) ·AG + µ · J) y

= (k − µ) · Iy + (λ− µ) ·AGy + µ · Jy

= (k − µ)y + (λ− µ) · sy + 0.

On the other hand, because ~y is an eigenvector, we have

A2
Gy = s ·AGy = s2y.

Combining these results, we have that

s2 = s(λ− µ) + (k − µ),

which we know has precisely two solutions:

(λ− µ)±
√

(λ− µ)2 + 4(k − µ)

2
.

So there are at most three eigenvalues:

k,
(λ− µ)±

√
(λ− µ)2 + 4(k − µ)

2
.
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Lemma 16. Suppose that G is a strongly regular graph, with parameters (n, k, λ, µ), and
that we’re not in any of our degenerate cases (i.e. µ > 0, k < n − 1, λ < k − 1.) Then the
three eigenvalues of AG have multiplicities

1,
1

2

(
n− 1± (n− 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

)
.

In particular, these quantities are integers.

Proof. First, notice that the eigenvalue k has multiplicity 1, as proven earlier in the notes.
So it suffices to find the other multiplicities.

The only other eigenvalues, as proven above, are

(λ− µ) +
√

(λ− µ)2 + 4(k − µ)

2
,
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

2
= r, s.

Let a be the multiplicity of the r eigenvalue, and b the multiplicity of the s eigenvalue. On
the homework, you will (hopefully!) prove the following lemma:

Lemma. Suppose that A is a n × n matrix with n eigenvalues λ1, . . . λn counted with
multiplicity. Then the trace7 of A is equal to the sum of these eigenvalues; that is,

n∑
i=1

aii =

n∑
i=1

λi.

Applying this theorem to AG for any adjacency matrix tells us in particular that the sum
of all of the eigenvalues for any adjacency matrix of a graph is 0, as our graphs do not have
loops (and therefore all of the entries on the diagonal of AG are 0.)

So, here, it tells us that

k + ra+ sb = 0,

as our AG has k as an eigenvalue once, r as an eigenvalue a times, and s as an eigenvalue b
times.

As well, because there are n eigenvalues counting multiplicity, we know that

1 + a+ b = n.

Combining, this forces

a = −k + s(n− 1)

r − s
, b =

k + r(n− 1)

r − s
;

i.e.

a, b =
1

2

(
n− 1± (n− 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

)
.

7The trace of a matrix A is simply the sum
∑n

i=1 aii of the elements on the diagonal of A.
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Lemma 17. For a strongly regular graph as above, we have

k(k − λ− 1) = µ(n− k − 1).

Proof. This is not hard to see! Take any vertex v ∈ G, and consider counting triples of
the form {v, w1, w2} where {v, w1}, {w1, w2} ∈ E(G), {v, w2} /∈ E(G). (I.e. count paths of
length 2 starting at v, where these paths don’t come from subgraphs of triangles.)

On one hand, if we count the w1 choices first and then the w2 choices, we can see that
there are k choices of w1 (as v has k neighbors by definition) and for each w1, k−λ−1 many
follow-up choices of w2 (as each w1 is connected to k more vertices, of which we discard λ
choices that would form a triangle, and also discard the choice corresponding to choosing
v.)

On the other, if we choose w2 first, we have n − k − 1 many choices, as there are k
vertices connected to v and thus n− k− 1 left over that are not connected to v. From here,
we want to choose for each w2 a w1 connected to both w2, v: i.e. a mutual neighbor to two
nonadjacent vertices. There are µ such choices.

These quantities count the same number; therefore they are equal, and we have proven
our claim!

Lemma 18. If r, s as above are not integers, then a = b, and our strongly regular graph is
specifically of the form (4t+ 1, 2t, t− 1, t) if it’s not degenerate.

Proof. If a 6= b, then the numerator in the fraction part of each multiplicity must be nonzero
(to make them distinct); this forces the denominator part of each of these fractions to be
rational, which in turn forces r, s to be rational. But if r, s are a pair of rational roots to a
monic polynomial with integer coefficients, they must be in fact integers!

So, the only other case left to us is when a = b. In this case, we have

0 =
1

2

(
n− 1 +

(n− 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

)
− 1

2

(
n− 1− (n− 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

)

⇒ 0 =
(n− 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

⇒ 0 = (n− 1)(µ− λ)− 2k

⇒ 2k = (n− 1)(µ− λ).

What does this force? Well: if µ−λ ≥ 2, we’d have to have k ≥ n− 1, which we disallowed
as a degenerate case. So we must have µ− λ = 1, (as otherwise forces k = 0, which is also
a degenerate case.) This forces n = 2k + 1, and thus that (by the third lemma) we have

k(k − λ− 1) = µ(n− k − 1) = µk

⇒ k − λ− 1 = µ

⇒ k − 2λ− 1 = (µ− λ) = 1

⇒ k − 2 = 2λ

⇒ (k/2)− 1 = λ.
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In particular, if we set t = λ+ 1, we get that our graph is of the form (4t+ 1, 2t, t−1, t).

This gives us a particularly nice corollary:

Corollary. If G is a strongly regular graph not of the form (4t+ 1, 2t, t− 1, t), then all of
G’s eigenvalues are integers.

6.3 Petersen-Like Graphs

So: when we started this section we did so in the hopes of finding more graphs that are
“like” the Petersen graph. With the language of strongly regular graphs, we can perhaps
be a bit more precise: the Petersen graph is a (10, 3, 0, 1). For what other values of n, k can
we find a (n, k, 0, 1) strongly regular graph?

Well: by the above, the only such graph with non-integer eigenvalues is a (5, 2, 0, 1) –
that is, a pentagon!

What can we say for the graphs that have integer eigenvalues? Well: if we use the
relation

k(k − λ− 1) = µ(n− k − 1)

we derived earlier, and plug in λ = 0, µ = 1, we get n = k2 + 1.
That’s something. What else can we get? Well: if r, s are integers, then in specific the

denominator √
(λ− µ)2 + 4(k − µ)

must also be an integer. In specific, because λ = 0, µ = 1, this means that
√

4k − 3 is an
integer: i.e. that 4k− 3 is a square of some integer! Denote this square as s, and by solving
for k write k = 1

4(s2 + 3). Then, if you plug first our formula n = k2 + 1 and then this
formula k = 1

4(s2 + 3) into the formula for one of our multiplicities (say the one for r), we
get

a =
1

2

(
n− 1 +

(n− 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

)

=
1

2

(
(k2 + 1)− 1 +

(k2 + 1− 1)(1)− 2k√
4k − 3

)
=

1

2

(
1

16
(s2 + 3)2 +

1
16(s2 + 3)2 − 1

2(s2 + 3)

s

)
⇒ 32a · s = s(s2 + 3)2 + (s2 + 3)2 − 8(s2 + 3)

= s5 + s4 + 6s3 − 2s2 + 9s− 15

⇒ 15 = s5 + s4 + 6s3 − 2s2 + (9− 32a)s

= s
(
s4 + s3 + 6s2 − 2s+ (9− 32a)

)
.
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Because all of the quantities on the right-hand-side above are integers, we must have that s
divides 15: i.e. s can be one of 1, 3, 5, or 15, which forces k to be one of 1, 3, 7, 57. Plugging in,
using our identity n = k2 + 1, and remembering the pentagon which we already considered,
we can see that any possible (n, k, 0, 1) graph must have one of the following five parameter
sets:

(2, 1, 0, 1), (5, 2, 0, 1), (10, 3, 0, 1), (50, 7, 0, 1), (3250, 57, 0, 1).

The first is just K2; the second is C5, a pentagon; and the third is the Petersen graph. How
about the fourth?

7 A Really Pretty Picture

This graph is the Hoffman-Singleton graph8, and is formed as follows: Take five stars

8Roughly speaking, it’s a bunch of Petersen graphs inside of Petersen graphs. Depending on which meme
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P0, . . . P4 and five pentagons Q0, . . . Q4. Enumerate the vertices of each pentagon and star
in counterclockwise order as 0, 1, 2, 3, 4, and for every i, j, k connect the vertex i in Pj to
the vertex i+ jk in Qk.

Gorgeous! This leaves just one set of parameters to study: (3250, 57, 0, 1). Determining
whether a SRG exists with these parameters is. . . surprisingly, an open problem! (In general,
determining which sets of parameters admit strongly regular graphs is an open problem: see
this project description from the Winter Problem-Solving course, and this table of known
results and open problems!

you prefer, you can caption this as either “Peteception” or “Yo dawg, I heard you like the Petersen graph so I
put a Petersen graph in your Petersen graph so you can disprove conjectures while you disprove conjectures.”

46
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http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
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