Homework 13: Linear Algebra

Due Friday, Week 7
UCSB 2015

Solve one of the following three problems!

1. Prove the following claims about permutation matrices:
(a) If P is a permutation matrix with associated permutation σ, then P^{-1} is a permutation matrix with associated permutation σ^{-1}.
(b) If P is a $n \times n$ permutation matrix with associated permutation σ, then $\left(v_{1}, \ldots v_{n}\right)$. $P=\left(v_{\sigma^{-1}(1)}, \ldots v_{\sigma^{-1}(n)}\right)$.
2. Consider the Pell sequence $\left\{p_{i}\right\}_{i=1}^{\infty}$, defined recursively as follows:

- $p_{0}=0$.
- $p_{1}=1$.
- $p_{n}=2 p_{n-1}+p_{n-2}$.

The first ten Pell numbers are listed here:

$$
0,1,2,5,12,29,70,169,408,985, \ldots
$$

(a) Find a matrix $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{c}
p_{n} \\
p_{n-1}
\end{array}\right]=\left[\begin{array}{c}
p_{n+1} \\
p_{n}
\end{array}\right] .
$$

(b) Find the eigenvalues and corresponding eigenvectors of P.
(c) Use this information along with the methods we discussed in class to find p_{50}.
3. Consider the following two-player game that you can play on a $n \times n$ grid:

- There are two players, 1 and 2.
- These two players alternate putting real numbers into the entries of the matrix.
- Once the matrix is filled, player 1 wins if the determinant of this matrix is nonzero; player 2 wins if the determinant is zero.

Can you find a strategy for one of these players that guarantees that they'll win?

