
CCS Discrete Math I Professor: Padraic Bartlett

Lecture 3: Catalan Numbers

Week 3 UCSB 2014

In this week, we start studying specific examples of commonly-occurring sequences of
numbers (as opposed to the more general counting techniques we discussed for the past few
weeks.) Our first example of such a sequence are the Catalan numbers:

1 Catalan Numbers

1.1 Ascii Mountain Ranges

Question. Suppose you have a number of forward-slashes “/” and backward-slashes “\”.
An Ascii mountain range is any sequence made of these 2n slash marks, with forward
slashes interpreted as an increase in altitude and backward-slashes interpreted as a decrease
in altitude, so that

• We end at the same height that we start.

• We never dip below the height that we start at.

Here are some Ascii mountain ranges:

/\ /\

/\ / \/\ /\ / \

/ \ /\/ \ / \ /\ / \/\

/ \ / \ /\/\/\/ \ / \/ \/\

Here are some sequences that are not mountain ranges:

/\/\/\/ /\

/ /\ /\ / \ /\

/ /\ /\/\/ \ / \ /\/\ /\/ \ / \

\/ \/ \/ \

Let Mn denote the total number of mountain ranges of length 2n. What is Mn, for any n?

Answer. We start by first collecting some data, to help us make a guess. In a sense, there
is exactly one possible mountain range made out of 0 slash marks, in the same way that
there is one way to pick 0 things out of a set: so we say that M0 = 1.

More intuitively, there is exactly one mountain range made out of 2 slash marks; this is
because our first move must be to place a / so that we increase in altitude, which we must
follow with a \ to go back down to our starting height.

/\

There are two possible mountain ranges made out of 4 slash marks:
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/\

/\/\ / \

There are five possible mountain ranges made out of 6 slash marks:

/\

/\ /\ / \ /\/\

/\/\/\ / \/\ /\/ \ / \ / \

With some time, you can figure out that M4 = 14 and M5 = 42, giving us the following
table:

n 0 1 2 3 4 5

Mn 1 1 2 5 14 42

It’s hard to see a pattern in the above data! So, instead, let’s try to think about how we
actually make these mountains. Notice that with any mountain,we must have the following:

• We must start our mountain with a forward slash. Let’s color it green: “/.”

• We must at some point in time return back to our original height via a backslash.
Let’s color the first such backslash that returns to our original height red: “\.”

/\

/ \ /\

/ \/ \ /\/\

/ \ / \

/ \/ \

Now, make the following observations:

• Between our green forward-slash and our red backslash, we have a mountain that
starts at height 1 and never dips below height 1.

• After our red backslash, we have a mountain that starts and ends at height 0.

In other words, we have written our original mountain range as the combination of two
smaller mountains, one of which we put on top of the “/, \” marks and the other of which
we put to the right of the “\” mark. Furthermore,

• This decomposition is unique: that is, given any original mountain range, our process
above isn’t ambiguous in how it breaks our mountain into two smaller mountains!

• This process is reversible: given our two smaller mountains, we can “combine” them
by undoing our process to get back to our original mountain range!

Consequently, if we want to count the total number of large mountains, it suffices to count
all of the pairs of smaller mountains that can create those larger mountains. In other words,
we have a recursive relationship! Specifically, because we can break any 2n-length mountain

2



down into some 2k-length mountain on top of the “/, \” marks, along with a 2(n− 1− k)-
length mountain after those marks, we have the following recursive relationship:

Mn = M0Mn−1 + M1Mn−2 + . . . =

n−1∑
k=0

MkMn−1−k.

This looks familiar! In fact, we’ve noticed a relationship like this before: last week,
when we studied generating functions, we saw that( ∞∑

n=0

anx
n

)
·

( ∞∑
n=0

bnx
n

)
=
∞∑
n=0

(
n∑

k=0

akbn−k

)
xn

for any two formal power series
∑∞

n=0 anx
n,
∑∞

n=0 bnx
n.

In particular, this tells us that if we set F (x) =
∑∞

n=0Mnx
n, we get

F (x) · F (x) =

( ∞∑
n=0

Mnx
n

)
·

( ∞∑
n=0

Mnx
n

)
=
∞∑
n=0

(
n∑

k=0

MkMn−k

)
xn

Our recursive relationship tells us that
∑n

k=0MkMn−k = Mn+1; therefore, we have

(F (x))2 =
∞∑
n=0

(
n∑

k=0

MkMn−k

)
xn =

∞∑
n=0

Mn+1x
n

⇒ x(F (x))2 =
∞∑
n=0

Mn+1x
n+1 =

∞∑
n=1

Mnx
n = −M0 +

∞∑
n=0

Mnx
n

⇒ x(F (x))2 = −1 + F (x)

⇒ x(F (x))2 − F (x) + 1 = 0.

So: we have an expression for F (x)! In particular, we have a quadratic-polynomial-
type expression for F (x): therefore, we know that F (x) has to algebraically satisfy this

expression! However, we know the form of any solution to a quadratic of the form a ?
2

+

b ? + c: it’s given by the quadratic formula ? = −b±
√
b2−4ac
2a .

In particular, we have that

F (x) =
1±
√

1− 4x

2x

for our specific formal power series F (x).
Now: remember when we defined formal power series, and I said that we’d never plug

things into them? I kinda lied. We will almost never plug things into generating functions,
and whenever we do we will be careful to make sure that the infinite sum we’ve created
actually converges to something sensible and that we’re making sense. But! Now is totally
one of the times where it makes sense to do this! Consider what we’ve got here:
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• On one hand, if we take any formal power series — no matter what it is! — we can
always plug in x = 0 to it and get something well-defined. Specifically, if our formal
power series is some A(x) =

∑∞
n=0 anx

n, setting x = 0 is just saying that every term
other than the a0 term gets multiplied by 0n = 0; in other words, A(0) = a0! So no
matter what our formal power series is, we know that plugging in 0 to it should give
us its constant term.

• On the other hand, for the problem we’re currently considering, we know that F (x) =
1±
√
1−4x
2x . This is a little irritating, in that we have this ± term: we’re getting two

possible answers for F (x), when we really want one (after all, there is only one correct
value for Mn, the number of 2n-length mountain ranges!)

• So: what happens when we plug in x = 0 to 1±
√
1−4x
2x ? Well: if we have the +-branch,

we get something of the form 2
0 at x = 0; this is hopeless, as it will neither equal

1 = M0 = F (0) nor could it even equal 1 in the limit, as the top goes to 2 while the
bottom goes to 0!

Conversely, if we take the − branch, we get something of the form 0
0 at x = 0, which

is . . . not great, but better! In specific, if we take limits + use L’Hopital, we can see
that

lim
x→0

1−
√

1− 4x

2x
= lim

x→0

d
dx

(
1−
√

1− 4x
)

d
dx (2x)

= lim
x→0

1
2(1− 4x)−1/2 · 4

2
= 1,

which is right!

• So, we actually know which of the two branches is right to consider here: we must
have

F (x) =
1−
√

1− 4x

2x
.

Cool! So. If this was a standard generating-functions problem, we’d find some way to
expand the right-hand side as a power series, and use this expansion to determine what the
Mn’s are! To do this, we’re going to need new tools, however: we have this

√
1− 4x term,

which we don’t have tools for.
Let’s build them!

1.2 Detour: Newton’s Generalized Binomial Theorem

Last week, we proved that for any n ∈ N,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

We want to understand (1− 4x)1/2. A seemingly very dumb thing we could write to try to
answer this problem is the following:

(1− 4x)1/2 =

1/2∑
k=0

(
1/2

k

)
1k(−4x)(1/2)−k.
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Surprisingly, this is actually correct! Let’s make some definitions, so we can prove this:

Definition. Take any real number r not in the natural numbers, and any natural number
k. We define the generalized binomial coefficient

(
r
k

)
as follows:(

r

k

)
=

(r)(r − 1)(r − 2) . . . (r − (k − 1))

k!
.

Notice that if r was a natural number ≥ k, this is literally the same thing as the normal
binomial coefficient!

By convention, if k = 0, we set this expression equal to 1.

This lets us make the
(1/2

k

)
terms make sense. To get the rest of the expression, let’s

pull out some results from calculus:

Definition. Take any function f(x). The Taylor series around 0 corresponding to f(x)
is the power series

∞∑
n=0

f (n)(0)

n!
xn,

where f (n)(0) denotes the n-th derivative of f(x) evaluated at x = 0.

So. Suppose that we consider the Taylor series for (x + y)r, for any non-natural real
value r. To do this, we’ll need to find the derivatives of this function with respect to x. It
is not too hard to see that

d

dx
((x + y)r) = r(x + y)r−1 · d

dx
(x + y) = r(x + y)r−1 · 1 = r(x + y)r−1

d2

dx2
((x + y)r) =

d

dx

(
r(x + y)r−1

)
= r(r − 1)(x + y)r−2 · d

dx
(x + y) = r(r − 1)(x + y)r−2

d3

dx3
((x + y)r) =

d

dx

(
r(r − 1)(x + y)r−2

)
= r(r − 1)(r − 2)(x + y)r−3

...

dn

dxn
((x + y)r) =

d

dx

(
r(r − 1) . . . (r − (n− 2))(x + y)r−2

)
= r(r − 1) . . . (r − (n− 1))(x + y)r−n.

(The last step here is justified by induction; we leave formal details to the reader! Do this
iff you don’t see why it’s true.)

If you plug in x = 0, you get that

dn

dxn
((x + y)r)

∣∣∣
x=0

= r(r − 1) . . . (r − (n− 1))(x + y)r−n
∣∣∣
x=0

== r(r − 1) . . . (r − (n− 1))yr−n,
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and therefore that the Taylor series corresponding to (x + y)r is just

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

r(r − 1) . . . (r − (n− 1))

n!
yr−nxn.

The coefficients here are precisely our generalized binomial coefficients! Therefore, we’ve
shown that the Taylor series for (x + y)r is actually

∞∑
n=0

(
r

n

)
yr−nxn,

and specifically that the Taylor series for (1− 4x)1/2 is

∞∑
n=0

(
r

n

)
(−4x)n.

From here, we need a few quick results from calculus: we simply state them, and leave
their derivation (because they involve more in-depth Taylor series manipulations than we
want to do here) for the reader!

• Our Taylor series for (1− 4x)1/2 converges and is equal to (1− 4x)1/2 for values of x
in (−1/4, 1/4).

• Two power series are equal if and only if all of their coefficients are equal!

• Therefore, we have

∞∑
n=0

Mnx
n = F (x) =

1−
√

1− 4x

2x
=

1−
∑∞

n=0

(
1/2
n

)
(−4x)n

2x
.

1.3 Back to Mountains

So we can solve for the Mn coefficients! We do this here.
First, let’s clean up our expression above, by just doing some algebraic manipulations.

Nothing crazy happens here; try to read line-by-line and make sure you follow our steps!
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∞∑
n=0

Mnx
n =

1−
∑∞

n=0

(
1/2
n

)
(−4x)n

2x

=
1−

(
1/2
0

)
(−4x)0 −

∑∞
n=1

(
1/2
n

)
(−4x)n

2x

=
1− 1−

∑∞
n=1

(
1/2
n

)
(−4x)n

2x

=
∞∑
n=1

−
(
1/2
n

)
(−4x)n

2x

=

∞∑
n=0

−
(
1/2
n+1

)
(−4x)n+1

2x

=
∞∑
n=0

2

(
1/2

n + 1

)
(−4x)n

=

∞∑
n=0

2
(1/2)((1/2)− 1) · . . . · ((1/2)− ((n + 1)− 1))

(n + 1)!
(−4x)n

=

∞∑
n=0

2

(n+1) terms︷ ︸︸ ︷
1

2
· −1

2
· −3

2
· −5

2
· . . . · 1− 2n

2
(n + 1)!

(−1)n4nxn

=
∞∑
n=0

2

(n+1) terms︷ ︸︸ ︷
1

2
· 1

2
· 3

2
· 5

2
· . . . · 2n− 1

2
·(−1)n

(n + 1)!
(−1)n4nxn

=
∞∑
n=0

1 · 3 · 5 · 7 · . . . · (2n− 1) · (−1)n · 1
2n

(n + 1)!
(−1)n4nxn

=

∞∑
n=0

1 · 3 · 5 · 7 · . . . · (2n− 1)

(n + 1)!
2nxn

Ok, let’s breathe for a second. The right-hand side is certainly less awful than before, but
it’s still not as simple as possible. In particular, the 1 · 3 · 5 · 7 · . . . · (2n− 1) expression isn’t
necessarily as simple as we’d like!

We can fix this, with the following clever trick; I call this out mostly because it’s a
manipulation I’ve seen come up about once every four-five months, and it’s useful to have
somewhere in your mind! Notice that

2n · n! = 2n · (1 · 2 · . . . · n) = 2 · 4 · 6 · . . . · 2n.
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Therefore, we have

1 · 3 · 5 · 7 · . . . · (2n− 1) =
(2n)!

2n · n!
,

and thus that

∞∑
n=0

Mnx
n =

∞∑
n=0

1 · 3 · 5 · 7 · . . . · (2n− 1)

(n + 1)!
2nxn

=
∞∑
n=0

(2n)!

2nn!(n + 1)!
2nxn

=
∞∑
n=0

1

n + 1

(2n)!

2nn!n!
2nxn

=

∞∑
n=0

1

n + 1

(
2n

n

)
xn

That is. . . a far nicer expression. Also: it works! In theory, we should have Mn = 1
n+1

(
2n
n

)
for all n, and check it out:

M0 =
1

0 + 1

(
2 · 0

0

)
= 1,

M1 =
1

1 + 1

(
2 · 1

1

)
=

1

2

2!

1!1!
= 1,

M2 =
1

2 + 1

(
2 · 2

2

)
=

1

3

4!

2!2!
= 2,

M3 =
1

3 + 1

(
2 · 3

3

)
=

1

4

6!

3!3!
= 5,

M4 =
1

4 + 1

(
2 · 4

4

)
=

1

5

8!

4!4!
= 14,

M5 =
1

5 + 1

(
2 · 5

4

)
=

1

6

10!

5!5!
= 42.

Amazing! Math: it’s ridiculous.

1.4 Alternate Derivations

When you get an answer as simple as Mn = 1
n+1

(
2n
n

)
, it suggests that there may be a nice

combinatorial interpretation of this formula as it relates to mountains — that is, some way
in which we can “pick” n things out of 2n things, and after scaling by 1/(n + 1) to deal
with overcounting get our answer! Pleasantly, this is true: there is a way to derive our
closed-form forumla for Mn without generating functions! We present this here, after the
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generating function solution, because (while this is a much shorter solution) it is arguably
one that requires more cleverness: unlike the above, which was a (crazy) application of
tools we know, this one involves either knowing the answer Mn = 1

n+1

(
2n
n

)
ahead of time or

coming up with some surprising insights into mountain ranges (or both!)
We do this here. First, let’s change our problem somewhat: consider any sequence

made out of n + 1 forward-slashes “/” and n backslashes “\.” Here, we’re not worrying
about these sequences forming proper mountain ranges: i.e. we can dip below our starting
altitude. Moreover, we know that after one of these sequences, we will be precisely one unit
higher than we started, as we went “up” n + 1 times and “down” n times.

Imagine drawing these slashes on the integer lattice Z2, so that each forward slash
connects some (a, b) to (a + 1, b + 1), and each backwards slash connects some (a, b) to
(a + 1, b− 1).

1.5 Catalan Numbers in Other Contexts

Not to knock the above derivations, but they’re actually not what most mathematicians
think are the “cool” things here! Instead, consider the recurrence relation we studied to get
these numbers:

C0 = C1 = 1, Cn =

n−1∑
k=0

CkC(n−1)−k

The crazy thing about this recurrence is that there are literally hundreds of mathematical
objects and concepts that reduce to this pattern! On the homework you have six of these
recurrences to study; we give one more particularly beautiful example here.

Let Cn denote the total number of ways to take a n + 2-sided regular convex polygon
can be cut into triangles by drawing straight lines between vertices. There are fourteen
ways to do this for n = 4, as drawn below:

(Picture stolen from Wikipedia)

I claim that this sequence satisfies the recurrence relation described above. Our base
cases, as typical, are automatic; C0 is kind-of trivially 1, as there’s exactly one way (do
nothing) to cut the non-existent 2-sided regular polygon into triangles, while C1 = 1 because
there’s exactly one way (do nothing!) to cut a triangle into. . . triangles.

To get our recurrence relation: Take any regular n + 2-gon. How are we going to break
this into smaller polygons? Well: if we’ve divided our polygons into triangles, this motivates
us to think about cutting along a triangle to get smaller polygons!

9



Specifically, take our polygon, and pick out the triangle that uses the top edge: because
we’ve broken our polygon into triangles, we know that exactly one such triangle exists! Split
our polygon into two polygons along this triangle: because we create two new edges from
the chord-lines of this triangle, and delete one edge by getting rid of the top edge, we must
have

Cn-1-kCk

Split our polygon into two polygons along this triangle: because we create two new
edges from the chord-lines of this triangle, and delete one edge by getting rid of the top
edge, we must have n + 2 + 2 − 1 = n + 3 edges, split over two polygons. So we have one
k + 2-gon and one n− 1− k + 2-gon! In other words, we have the recurrence

C0 = C1 = 1, Cn =

n−1∑
k=0

CkC(n−1)−k

as claimed.
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