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Today’s application is to magic! Not the friendship kind, though; instead, we’re going
to talk about magic squares, an incredibly old piece of mathematics that we can study
using Latin squares.

1 Magic Squares

Definition. A magic square is a n×n grid filled with the integers {0, 1, . . . n2− 1}, such
that

• each number is used exactly once in our entire grid, and

• the sum of all of the entries along any row, column, the main diagonal1 or the main
antidiagonal all come out to the same constant value.

Here’s an example for order 3:

1 6 5

8 4 0

3 2 7

Magic squares have been studied for a fairly ridiculously long time. Mathematicians
and philosophers were aware of them since about 650 BC; since their discovery, people
have used them both as the basis for magic tricks (when your population is largely numer-
ically illiterate, magic squares were a neat way to perform seemingly impossible feats) and
religious/spiritual/cultural icons.

(A zoomed-in portion of an engraving by Albrecht Dürer, titled Melencolia I. Note how he
hid the year of his engraving, 1514, in the last row.)

1The main diagonal of a n × n grid is simply the set of cells connecting the top-left to the bottom-
right cells: i.e. (1, 1), (2, 2), . . . (n, n). Similarly, the main antidiagonal is just the set of cells connecting the
bottom-left to the top-right: i.e. (n, 1), (n− 1, 2), . . . (1, n).
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As mathematicians, our first impulse upon seeing a new definition is to ask “When do
these things exist?” By doing some scratchwork, we can show that these don’t exist for

order 2: this is because every grid we can make will look like either
0 2

3 1
or

0 1

3 1
or

0 1

2 3
, by rotating it so that 0 is in the upper-left corner and flipping it so that the entry in

the upper-right is greater than the one in the lower-left. None of these are magic: therefore,
there is no magic square of order 2.

There is one of order 1 (Behold: 0 !), and we’ve already shown that ones exist of order
3 and 4. However, we haven’t really introduced a method for looking for these yet; we’ve
just sort of given some examples, most of which we made by just picking numbers.

Surprisingly, we can create these objects using Latin squares! We describe the method
here:

2 Diagonal Latin Squares

Definition. A diagonal Latin square is a Latin square such that its main diagonal
contains no repeated symbols, and similarly its main antidiagonal also does not contain any
repeated symbols.

We can easily make one of order 1 (Behold: 1 !), and can easily see that we cannot do
this for order 2: if we take a 2× 2 Latin square with the symbols 1, 2 on the diagonal, i.e.
1

2
, there’s clearly no way to complete this to a Latin square.

Similarly, if we take a 3 × 3 partial Latin square with 1, 2, 3 on the diagonal (without
any loss of generality, in the order (1, 2, 3)), we can see that there is only one way to fill it
in:

1

2

3

−→
1

2 1

1 3

−→
1 3 2

3 2 1

2 1 3

.

This square does not contain the symbols 1, 2, 3 on its antidiagonal; therefore, there is no
diagonal Latin square of order 3.

Conversely, using the same method of “just try it” gives us a way to explicitly find a
diagonal Latin square of order 4: if we attempt to put the symbols 1 . . . 4 on the diagonal,
we can try to put 3 in the cells (1, 2), (2, 1),

1

2

3

4

−→

1 3

3 2

3

4

−→

1 3 4 2

3 2 ? 1

3

4

in which case we fail. Alternately, we can try to put 3 in (1, 2) and 4 in (2, 1), in which case

2



we have

1

2

3

4

−→

1 3

4 2

3

4

−→

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

,

which works! So we’ve found one for order 4.
However, this ad-hoc approach is unsatisfying: when will it work? How can we do this

efficiently; i.e. without having to run into dead ends, or with a guarantee that our process
will work?

There are a number of constructions that mathematicians have came up with over time.
One of my favorites, b/c of its simplicity, is the following:

Construction. Take any value of n, and any two numbers a, b ∈ {0, . . . n − 1}. Consider
the following square populated with the elements {0, 1 . . . n− 1}:

L =

0 a 2a 3a . . . (n− 1)a

b b + a b + 2a b + 3a . . . b + (n− 1)a

2b 2b + a 2(b + a) 2b + 3a . . . 2b + (n− 1)a

3b 3b + a 3b + 2a 3(b + a) . . . 3b + (n− 1)a
...

...
...

...
. . .

...

(n− 1)b (n− 1)b + a (n− 1)b + 2a (n− 1)b + 3a . . . (n− 1)(b + a)

mod n.

In other words, L’s (i, j)-th cell contains the symbol given by taking the quantity ai + bj
mod n.

This construction, made by filling in the cells (i, j) of our Latin square using some linear
map ai+ bj, should feel familiar to you: it is the same kind of map we used when we turned
finite fields into Latin squares, and it is also the same kind of map we used when we turned
affine planes into Latin squares, kinda (i.e. the same idea of parallel lines becoming Latin
squares showed up in both of these things.)

Given this construction, a question we’d like to ask is the following: for what values of
n is this a diagonal Latin square?

This is your first HW problem!
Your second HW problem is to prove the following:

Proposition. Given a Latin square L produced by the above process, the transpose2 LT

is also a diagonal Latin square, and is furthermore orthogonal to L.

Here’s your third problem:

Proposition. Take any pair of orthogonal diagonal n × n Latin squares L1, L2 on the
symbols {0, . . . n− 1}. Create the square M as follows: if the cell (i, j) contains the symbol
x in L1, y in L2, write down the number nx + y in the cell (i, j) of M . This square M is a
magic square.

2The transpose of an n× n array is what you get when you “flip” your array over its main diagonal.
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