Math/CS 103

## Minilecture 5: Projective Planes

UCSB 2014

## 1 Projective Planes

**Definition.** A **projective plane** is a collection of points and lines in space that follow the following fairly sensical rules:

(P1): Given any two points, there is a unique line joining any two points.

(P2): Any two distinct lines intersect at a unique point.

(P3): There are four points, no three of which are collinear.

Basically, these are the affine plane axioms, except we removed the "Given any line L and point P, there is exactly one line parallel to L through P" property, and replaced it with the axiom "There are no parallel lines."

Here is an example of a projective plane containing seven points and seven lines:



The seven lines above are the three faces of the triangle, the three bisectors through the center of the triangle, and the circle (which is a single line.)

Projective planes are intimately related to affine planes, as you will show on the HW:

**Proposition.** Take any projective plane P. Pick a line in P, and delete that line along with all of the points on that line. The resulting set of points and lines is an affine plane.

**Proposition.** Take any affine plane A. Divide A's lines into n+1 parallel classes  $C_1, \ldots, C_{n+1}$ . For each class  $C_i$ , add a point  $\infty_i$  to our plane, and have every line of  $C_i$  go through  $\infty_i$ . Finally, add a line consisting of all of the points  $\infty_1, \ldots, \infty_{n+1}$ .

This creates a projective plane.