Math/CS $103 \quad$ Professor: Padraic Bartlett
Minilecture 5: Affine Planes

Week 4
UCSB 2014

1 Affine Planes

Definition. An affine plane is a collection of points and lines in space that follow the following fairly sensical rules:
(A1): Given any two points, there is a unique line joining any two points.
(A2): Given a point P and a line L not containing P, there is a unique line that contains P and does not intersect L.
(A3): There are four points, no three of which are collinear. (This rule is just to eliminate the silly case where all of your points are on the same line.)
\mathbb{R}^{2} satisfies these properties, and as such is an affine plane. In this class, we're going to be interested in studying finite affine planes: i.e. affine planes with finitely many points. For example, the following set of four points and six lines defines an affine plane:

The following set of nine points and twelve lines defines another affine plane:

(All lines in the picture above contain three points. There are three teal dashed lines going left-to-right, three solid blue lines going straight up and down, three gold dash/dot lines on the bottom-left to top-right diagonals, and three maroon small-dash lines on the top-left to bottom-right diagonal.)

Finite affine planes satisfy a number of interesting properties. To get an idea of how these properties work, we study one example here:

Proposition. In any affine plane, there is an integer n such that every line in our plane contains exactly n points, and every point lies on precisely $n+1$ lines. We call this value the order of our plane.

Proof. There are two possible cases to consider here:

1. Suppose that for any two lines L_{1}, L_{2} in our plane, we can always find a third point P such that P does not lie on either of these lines. Then, given any point Q on the line L_{1}, we can find a line M through Q and P using property $A 1$ of our affine plane. This line cannot intersect any other elements on L_{1}, because otherwise (if it did, at some point R) we would not have a unique line defined by the points Q and R (as both L_{1} and M would contain both of them, while being distinct lines because M contains P while L_{1} does not.)

So, every point in L_{1} is contained within exactly one line through P. Furthermore, there is exactly one other line that goes through P that intersects no point of L_{1}, by property $A 2$. So, if $\left|L_{1}\right|$ denotes the total number of points contained in the line L_{1}, we have that $\left|L_{1}\right|+1$ many lines go through P.
Similarly, every point in L_{2} is contained within exactly one line through P, and there is precisely one other line through P that does not intersect L_{2}. Therefore, if $\left|L_{2}\right|$ denotes the total number of points contained in the line L_{2}, we also have that $\left|L_{2}\right|+1$ many lines go through P.
But these two things are counting the same object: the number of lines through P. Therefore, these two quantities are equal: i.e. $\left|L_{1}\right|=\left|L_{2}\right|$. Therefore, all lines contain the same number (call it n) of points, and any point is contained by $n+1$ many lines.
2. If we are not in the first case, then there are two lines L_{1}, L_{2} such that every point of P is contained within our two lines. We claim that our plane is in fact the affine plane with four elements that we gave an example of earlier.
To see why: first, notice that by our property $A 3$, we must have two of these points on L_{1} and not on L_{2}, and the other two on L_{2} and not on L_{1}. Call the L_{1} points P_{1}, P_{2} and the L_{2} points Q_{1}, Q_{2}. Suppose for contradiction that we had a third point running around. By assumption, it has to lie on either line L_{1} or L_{2} : without loss of generality, assume it lies on line L_{1}, and call it P_{3}.
Examine the line M_{1} formed by the points P_{1}, Q_{1}, M_{2} formed by the points P_{2}, Q_{2} and M_{3} formed by the points P_{3}, Q_{2}. Note that neither M_{1} nor M_{2} can be L_{1} or L_{2}, by the argument we just made above.
We know that at most one of the line M_{2}, M_{3} can be parallel to M_{1}; therefore, at least one of them must intersect M_{1}.
Suppose that M_{1} and M_{2} intersect at some point. If it is a point P_{i} on L_{1}, then the pair of points P_{1}, P_{i} defines both of the distinct lines M_{1} and L_{1}, which contradicts our property $A 1$. Instead, if it's a point Q_{j} on L_{2}, then the pair of points Q_{1}, Q_{j} also defines both of the distinct lines M_{1} and L_{2}, which contradicts $A 1$ again.

So we cannot have M_{1} and M_{2} intersecting; therefore, we must have M_{1} and M_{3} intersect. But this creates the same set of problems - no matter how they intersect, we'll get a pair of points that define two distinct lines!
Therefore, we must have that L_{1} and L_{2} must contain exactly two points, as must all other lines; consequently, we have that there are four points in total in our plane. Because any two of them uniquely define a line, we have $\binom{4}{2}=6$ many edges in total, $\binom{3}{1}=3$ of which pass through any point. This is in particular the affine plane we drew earlier with four points and six edges, which we call the affine plane of order 2.

Using this, on the HW you're asked to prove the following:
Proposition. Any finite affine plane of order n contains n^{2} many points.
For our third property, the definition of a parallel class will be useful:
Definition. A parallel class in an affine plane is a collection of lines that are all parallel: i.e. such that no two of them intersect.

Proposition. Take any finite affine plane of order n. Then there are exactly $n^{2}+n$ lines in this plane, which can be partitioned into $n+1$ distinct parallel classes, each of which contains n lines.

This proposition is also on the HW!

