
Math/CS 103 Professor: Padraic Bartlett

Minilecture 5: Affine Planes

Week 4 UCSB 2014

1 Affine Planes

Definition. An affine plane is a collection of points and lines in space that follow the
following fairly sensical rules:

(A1): Given any two points, there is a unique line joining any two points.

(A2): Given a point P and a line L not containing P , there is a unique line that contains P
and does not intersect L.

(A3): There are four points, no three of which are collinear. (This rule is just to eliminate
the silly case where all of your points are on the same line.)

R2 satisfies these properties, and as such is an affine plane. In this class, we’re going to be
interested in studying finite affine planes: i.e. affine planes with finitely many points. For
example, the following set of four points and six lines defines an affine plane:

The following set of nine points and twelve lines defines another affine plane:

(All lines in the picture above contain three points. There are three teal dashed lines
going left-to-right, three solid blue lines going straight up and down, three gold dash/dot
lines on the bottom-left to top-right diagonals, and three maroon small-dash lines on the
top-left to bottom-right diagonal.)

Finite affine planes satisfy a number of interesting properties. To get an idea of how
these properties work, we study one example here:

1



Proposition. In any affine plane, there is an integer n such that every line in our plane
contains exactly n points, and every point lies on precisely n + 1 lines. We call this value
the order of our plane.

Proof. There are two possible cases to consider here:

1. Suppose that for any two lines L1, L2 in our plane, we can always find a third point P
such that P does not lie on either of these lines. Then, given any point Q on the line
L1, we can find a line M through Q and P using property A1 of our affine plane. This
line cannot intersect any other elements on L1, because otherwise (if it did, at some
point R) we would not have a unique line defined by the points Q and R (as both L1

and M would contain both of them, while being distinct lines because M contains P
while L1 does not.)

So, every point in L1 is contained within exactly one line through P . Furthermore,
there is exactly one other line that goes through P that intersects no point of L1, by
property A2. So, if |L1| denotes the total number of points contained in the line L1,
we have that |L1| + 1 many lines go through P .

Similarly, every point in L2 is contained within exactly one line through P , and there
is precisely one other line through P that does not intersect L2. Therefore, if |L2|
denotes the total number of points contained in the line L2, we also have that |L2|+1
many lines go through P .

But these two things are counting the same object: the number of lines through P .
Therefore, these two quantities are equal: i.e. |L1| = |L2|. Therefore, all lines contain
the same number (call it n) of points, and any point is contained by n+ 1 many lines.

2. If we are not in the first case, then there are two lines L1, L2 such that every point
of P is contained within our two lines. We claim that our plane is in fact the affine
plane with four elements that we gave an example of earlier.

To see why: first, notice that by our property A3, we must have two of these points
on L1 and not on L2, and the other two on L2 and not on L1. Call the L1 points
P1, P2 and the L2 points Q1, Q2. Suppose for contradiction that we had a third point
running around. By assumption, it has to lie on either line L1 or L2: without loss of
generality, assume it lies on line L1, and call it P3.

Examine the line M1 formed by the points P1, Q1, M2 formed by the points P2, Q2

and M3 formed by the points P3, Q2. Note that neither M1 nor M2 can be L1 or L2,
by the argument we just made above.

We know that at most one of the line M2, M3 can be parallel to M1; therefore, at
least one of them must intersect M1.

Suppose that M1 and M2 intersect at some point. If it is a point Pi on L1, then the
pair of points P1, Pi defines both of the distinct lines M1 and L1, which contradicts
our property A1. Instead, if it’s a point Qj on L2, then the pair of points Q1, Qj also
defines both of the distinct lines M1 and L2, which contradicts A1 again.
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So we cannot have M1 and M2 intersecting; therefore, we must have M1 and M3

intersect. But this creates the same set of problems — no matter how they intersect,
we’ll get a pair of points that define two distinct lines!

Therefore, we must have that L1 and L2 must contain exactly two points, as must
all other lines; consequently, we have that there are four points in total in our plane.
Because any two of them uniquely define a line, we have

(
4
2

)
= 6 many edges in total,(

3
1

)
= 3 of which pass through any point. This is in particular the affine plane we

drew earlier with four points and six edges, which we call the affine plane of order 2.

Using this, on the HW you’re asked to prove the following:

Proposition. Any finite affine plane of order n contains n2 many points.

For our third property, the definition of a parallel class will be useful:

Definition. A parallel class in an affine plane is a collection of lines that are all parallel:
i.e. such that no two of them intersect.

Proposition. Take any finite affine plane of order n. Then there are exactly n2 + n lines
in this plane, which can be partitioned into n + 1 distinct parallel classes, each of which
contains n lines.

This proposition is also on the HW!
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