Math/CS 103	Professor: Padraic Bartlett	
	Minilecture 2: Graph Theory	
Week 1		UCSB 2014

Graphs are incredibly useful and beautiful objects, used by mathematicians to model groups, electrical networks, airplane routes, and the internet itself! We define them here.

Definition. A graph G with n vertices and m edges consists of the following two objects:

1. a set $V=\left\{v_{1}, \ldots v_{n}\right\}$, the members of which we call G 's vertices, and
2. a set $E=\left\{e_{1}, \ldots e_{m}\right\}$, the members of which we call G 's edges, where each edge e_{i} is an unordered pair of distinct elements in V, and no unordered pair is repeated. For a given edge $e=\{v, w\}$, we will often refer to the two vertices v, w contained by e as its endpoints.

Example. The following pair (V, E) defines a simple graph G on five vertices and five edges:

- $V=\{1,2,3,4,5\}$,
- $E=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\}\}$.

Something mathematicians like to do to quickly represent graphs is draw them, which we can do by taking each vertex and assigining it a point in the plane, and taking each edge and drawing a curve between the two vertices represented by that edge. For example, one way to draw our graph G is the following:

However, this is not the only way to draw our graph! Another equally valid drawing is presented here:

In the field of graph theory, there are several graphs which come up enough to where we've given them names. We list them here, along with some of their properties:

- The cycle graph C_{n}. The cycle graph on n vertices, C_{n}, is the simple graph on the vertex set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ with edge set $E\left(C_{n}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}\right\}$. The cycle graphs C_{n} can be drawn as n-gons, as depicted below:

- The path graph P_{n}. The path graph on n vertices, P_{n}, is the simple graph on the vertex set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ with edge set $E\left(C_{n}\right)=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots\left\{v_{n-1}, v_{n}\right\}\right\}$. The path graphs P_{n} can be drawn as paths of length n, as depicted below:

Every vertex in a P_{n} has degree 2 , except for the two endpoints v_{1}, v_{n}, which have degree 1. P_{n} contains $n-1$ edges.

- The complete graph K_{n}. The complete graph on n vertices, K_{n}, is the simple graph on the vertex set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ that has every possible edge: in other words, $E\left(K_{n}\right)=\left\{\left\{v_{i}, v_{j}\right\}: i \neq j\right\}$. We draw several of these graphs below:

Every vertex in a K_{n} has degree $n-1$, as it has an edge connecting it to each of the other $n-1$ vertices; as well, a K_{n} has $n(n-1) / 2$ edges in total in it, by the degree-sum formula. (Explicitly: every vertex has degree $n-1$ and there are n vertices, therefore the sum of the degrees of K_{n} 's vertices is $n(n-1)$. We've shown that this quantity is twice the number of edges in the graph; dividing by 2 then tells us that the number of edges in K_{n} is $n(n-1) / 2$, as claimed.)

- The complete bipartite graph $K_{n, m}$. The complete bipartite graph on $n+m$ vertices with part sizes n and $m, K_{n, m}$, is the following graph:
$-V\left(K_{n, m}\right)=\left\{v_{1}, v_{2}, \ldots v_{n}, w_{1}, w_{2}, \ldots w_{m}\right\}$.
- $E\left(K_{n, m}\right)$ consists of all of the edges between the n-part and the m-part; in other words, $E\left(K_{n, m}\right)=\left\{\left(v_{i}, w_{j}\right): 1 \leq i \leq n, 1 \leq j \leq m\right\}$.

The vertices v_{i} all have degree m, as they have precisely m edges leaving them (one to every vertex w_{j}); similarly, the vertices w_{j} all have degree n. By either the degree-sum formula or just counting, we can see that there are $n m$ edges in $K_{n, m}$.

- The Petersen graph P The Petersen graph P is a graph on ten vertices, drawn below:

The vertices in P all have degree three; by counting or the degree-sum formula, P has 15 edges.

One useful notion, when talking about graphs, is the idea of a subgraph:
Definition. Given a graph G and another graph H, we say that H is a subgraph of G if and only if $V(H) \subset V(G)$ and $E(H) \subset E(G)$.

Example. The Petersen graph has the disjoint union of two pentagons $C_{5} \sqcup C_{5}$ as a subgraph, which we shade in red below:

Graphs in general - as you may have noticed - can be remarkably hairy and complicated things. As such, we might wonder whether we can say anything about a general graph at all; in other words, if G is a graph, can we say anything that restricts G ?

As it turns out, we can! Consider the following definition:
Definition. In a simple graph G, we say that a vertex $v \in V(G)$ has degree k iff there are exactly k edges in $E(G)$ that involve v. For example, in the graph drawn below, every vertex has degree 2 :

One quick question we could ask: for what values of n can we make a graph with the degrees of all vertices $=3$?

Well: in order to have each vertex have three neighbors ${ }^{1}$, we need to have at least four vertices (as each vertex needs three other vertices to send edges to.)

In the case where $n=4$, we can make every vertex have degree 3 , via the graph below:

[^0]

How about for $k=5$? Try it for yourself, on the vertices below:

2
As you may have noticed, no matter what you try, you can't get all of the degrees to be three! As it turns out, this is completely impossible - there is no graph on 5 vertices for which all of the vertices have degree 3 !

We explore this question, and others, in today's handout.

[^0]: ${ }^{1}$ We say that the vertices v and w are neighbors iff there is an edge connecting v and w. We denote the set of all neighbors of v as $N(v)$.

