Math/CS 103	Professor: Padraic Bartlett	
	Minilecture 11: Secret-Sharing Schemes	
Week 8		UCSB 2014

Latin squares can also be used for secret-sharing schemes, which we define here:
Definition. A (t, k)-secret-sharing scheme is a system where k pieces of information about some secret key K are distributed to various people, so that

- the key K can be reconstructed from the knowledge of any t pieces of information, and
- the key K cannot be reconstructed from the knowledge of less than t pieces of information (no matter what those pieces are!)

We can make these via Latin squares as follows:
Definition. A critical set in a $n \times n$ Latin square L is a collection of triples

$$
C=\{[(i, j), k] \mid i, j, k \in\{1, \ldots n\}\},
$$

such that the following properties hold:

1. L is the only Latin square of order n that has symbol k in cell (i, j), for each triple $[(i, j), k]$.
2. If we take any proper subset of C, property (a) does not hold for that subset.

For example, consider the Latin square

$$
L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}
$$

One critical set for L is the following:

$$
L=\begin{array}{|l|l|l|}
\hline & & \\
\hline 2 & & \\
\hline & 1 & \\
\hline
\end{array} .
$$

We say that a critical set C is minimal for L if there is no other critical set of smaller size for L.

We can use these minimal critical sets to construct secret-sharing systems! To see how, consider the following example. Let L be the 3×3 Latin square we created earlier. It is clear that the critical set we constructed is minimal, because specifying just one cell of a 3×3 Latin square does not uniquely specify it. Furthermore, if we pick any two cells in L that don't share the same row/column/symbol, it's hopefully relatively clear that they specify a critical set (prove this if you don't see why.)

Given these observations, consider the set

$$
S=\{[(2,1), 2],[(3,2), 1],[(1,3), 3]\} .
$$

Any subset of two elements of S forms a critical set for L ! Therefore, if we consider L to be the key K and the elements of S to be the pieces k_{1}, k_{2}, k_{3} of that key, we have constructed a $(2,3)$ secret-sharing system!

Generalizing this is part of this class's HW!

