Handout 7: More Mutually Orthogonal Latin Squares Week 4 UCSB 2014

This is due Friday, Jan. 31.

- 1. Prove the following proposition: For any n, the maximum number of squares in a collection of $n \times n$ mutually orthogonal Latin squares is n 1.
- 2. Prove the following proposition: for any prime p, there is a collection of p-1 mutually orthogonal $p \times p$ Latin squares.

(Hint: take $\mathbb{Z}/p\mathbb{Z}$. For each $a \in \mathbb{Z}/p\mathbb{Z}$, look at the collection of all lines of slope a. Can you turn this collection into a Latin square somehow?)

Bonus! Is hard. Is there a set of two 6×6 mutually orthogonal Latin squares?