Math/CS 103
\quad Handout 7: More Mutually Orthogonal Latin Squares
Week 4

This is due Friday, Jan. 31.

1. Prove the following proposition: For any n, the maximum number of squares in a collection of $n \times n$ mutually orthogonal Latin squares is $n-1$.
2. Prove the following proposition: for any prime p, there is a collection of $p-1$ mutually orthogonal $p \times p$ Latin squares.
(Hint: take $\mathbb{Z} / p \mathbb{Z}$. For each $a \in \mathbb{Z} / p \mathbb{Z}$, look at the collection of all lines of slope a. Can you turn this collection into a Latin square somehow?)

Bonus! Is hard. Is there a set of two 6×6 mutually orthogonal Latin squares?

