Math/CS 103	Professor: Padraic Bartlett	
	Handout 6: Finite Fields and Latin Squares	
Week 3		

This is due Friday, Jan. 31.

1. Attached to this problem set is a set of sixteen playing cards; each card has a face A,K,Q,J and a suit once.
Come up with a way of arranging these sixteen cards in a 4×4 grid, so that no suit or face is repeated in any row or column!
2. We say that a pair of $n \times n$ Latin squares L, M are mutually orthogonal if the following happens: form a $n \times n$ array (L, M) by putting the ordered pair $\left(l_{i j}, m_{i j}\right)$ in entry (i, j) of our array. If none of these ordered pairs are repeated in our entire array, we say that L and M are mutually orthogonal!
For example, the following pair of 3×3 Latin squares are mutually orthogonal:

$$
L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}, \quad L=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 3 & 1 & 2 \\
\hline 2 & 3 & 1 \\
\hline
\end{array}, \quad(L, M)=\begin{array}{|c|c|c|}
\hline(1,1) & (2,2) & (3,3) \\
\hline(2,3) & (3,1) & (1,2) \\
\hline(3,2) & (1,3) & (2,1) \\
\hline
\end{array} .
$$

This is because in (L, M), there are no repeated pairs of symbols.
Find a pair of $4 x 4$ mutually orthogonal Latin squares.
3. For any odd prime p, find a pair of mutually orthogonal Latin squares. (Hint: look at arithmetic tables for finite fields of order $p!$)

