$Math/CS \ 103$	Professor: Padraic Bartlett
	Handout 5: Finite Fields
Week 2	UCSB 2014

In this handout, we are studying finite fields! We discussed finite fields in the YouTube lecture; this handout is meant to test out some of those ideas. As always, LATEX up your work, and be able to turn it in by **Wednesday**, January 22nd, along with the other sets due that day.

1. Suppose that F is a finite field. Prove, using only the axioms that define a field that we discussed in class, that there is only one multiplicative identity 1 in F. In other words: suppose that F is a field, and that you have two elements 1, e such that

$$1 \cdot x = e \cdot x = x,$$

for any $x \in F$. Prove that 1 = e.

- 2. Prove that $\langle \mathbb{Z}/n\mathbb{Z}, +\cdot \rangle$ is a finite field whenever *n* is prime, and not a field whenever *n* is not prime.
- 3. Find a finite field containing exactly four elements.

Hint: $\mathbb{Z}/4\mathbb{Z}$ is not an example, as you've just proven in problem 1! So you have to try something else. Specifically: see if there is a way to fill in the addition and multiplication tables

+	a	b	c	d		•	a	b	c	d
a						a				
b					,	b				
c						c				
d						d				

in such a way that you get something that's a field!