Math/CS 103	Professor: Padraic Bartlett	
Week 2	Handout 4: Bipartite Graphs	

In this handout, we are studying more questions about graphs! In particular, we're returning to bipartite graphs: graphs that can be split into two sets V_{1} and V_{2}, such that there are no edges in G connecting two vertices in V_{1}, or connecting two vertices in V_{2} (i.e. all edges involve exactly one vertex in V_{1} and one in V_{2}.)

In particular, consider the following definition:
Definition. A matching of a graph G is a collection of edges M, such that every vertex of G is contained in at most one edge in M. Finally, a perfect matching of a graph $G=(V, E)$ is a collection of edges P such that every vertex $v \in V$ is contained in precisely one edge in P.

There are only two questions I want us to do today. As always, LATeX up your work, and be able to turn it in by Wednesday, January 22.

1. Take a bipartite graph $G=(V, E)$ with bipartition $V=V_{1} \cup V_{2}$. Suppose that there is some number k such that the degree of every vertex in G is k. Then G has a perfect matching: i.e. there's a way to pair off all of the elements of A with the elements of B.
2. Using problem 1, prove that every Latin rectangle can be completed to a Latin square.
