Homework 19: Latin Squares, Nets, and Integration

Due Friday, week 11
UCSB 2014

Homework Problems.

First, recall the following definitions:
Definition. A s-dimensional elementary interval in base b is a subset in \mathbb{R}^{s} of the form

$$
\left[\frac{a_{1}}{b^{d_{1}}}, \frac{a_{1}+1}{b^{d_{1}}}\right) \times\left[\frac{a_{2}}{b^{d_{2}}}, \frac{a_{2}+1}{b^{d_{2}}}\right) \times \ldots \times\left[\frac{a_{s}}{b^{d_{s}}}, \frac{a_{s}+1}{b^{d_{s}}}\right)
$$

for some collection of constants $a_{1}, \ldots a_{s}, d_{1}, \ldots d_{s}$. Note that all of our intervals are closed on the left and open on the right.

For example, the intervals $[1 / 3,2 / 3),[13 / 9,14 / 9)$, and $[2,3)$ are all one-dimensional elementary intervals in base 3 , while $[0,2$) is not such an elementary interval (we can't go from a to $a+2$) and neither is $[5 / 3,6 / 7$) (the denominator changes) or $[1 / 3,2 / 3]$ (the right side is closed.)

Similarly, $[1 / 4,2 / 4) \times[5 / 2,6 / 2),[3 / 8,4 / 8) \times[17 / 16,18 / 16)$, and $[1,2) \times[0,1 / 2)$ are all twodimensional elementary intervals in base 2 .

Definition. A (t, m, s)-net in base b is a collection of b^{m} points in $[0,1)^{s}$, such that every elementary interval E of volume $1 / b^{m-t}$ contains exactly b^{t} points.

Pick two of the following four problems to solve!

1. Consider the integral

$$
\int_{[0,1]^{4}} w x y z d w d x d y d z
$$

(a) Directly calculate this integral.
(b) Approximate this integral by choosing 9 points at random in $[0,1]^{4}$, plugging them into the function $w x y z$, and averaging.
(c) Approximate this integral by using the $(0,2,4)$ net we constructed in class.
2. Do the same task as in problem 1, but with a function of your own construction and net of your choice! The only restrictions are that you pick a function f that takes in at least three variables, and is not constant in any of these variables (i.e. $f(w, x, y, z)=0$ is boring, don't pick it.)
3. Prove the claim we made in class: if we have a set of $s-2$ mutually orthogonal Latin squares of order b, then we can create a $(0,2, s)$-net in base b. In particular, explain why our construction actually creates something that is a net.
4. Find three nets, such that (1) each net contains at least 5 points, and (2) are not of the form $(0,2, s)$.

