Math/CS 103

Homework 18: Elliptic Curves over Finite Fields

Due Friday, week 10 UCSB 2014

Homework Problems.

Pick two of the following four problems to solve!

- 1. Consider the following three elliptic curves:
 - $y^2 = x^3 x + 1$,
 - $y^2 = x^3 4x + 2$,
 - $y^2 = x^3 + 2x$.

For each curve, draw the collection of all of its points over $(\mathbb{Z}/5\mathbb{Z})^2$.

- 2. Pick a curve from the above set of three curves. Create a group table corresponding to that curve's points (i.e. create a table that tells someone how to add any two points on the curve.)
- 3. In a group $\langle G, + \rangle$, an element g is said to **generate** that group if we can write any element in the group as just a repeated sum of g's. For example, $\langle \mathbb{Z}/4\mathbb{Z}, + \rangle$ is generated by the element 1, because we can write $1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4 \cong 0 \mod 4$.
 - (a) Find an elliptic curve that is generated by one element.
 - (b) Find an elliptic curve that is not generated by any one element.
- 4. What is the maximum number of points an elliptic curve over $\mathbb{Z}/5\mathbb{Z}$ can contain? What is the minimum?