```
Math/CS 103

\section*{Homework 16: Cryptography and Latin Squares}
```

Due Friday, week 9

Homework Problems.

Pick two of the following four problems to solve!

1. Take a $n \times n$ Latin square L filled with the symbols $\left\{s_{1}, \ldots s_{n}\right\}$, such that its first row and first column consist of the symbols $s_{1}, \ldots s_{n}$ in order. For example,

$$
\left[\begin{array}{lll}
s_{1} & s_{2} & s_{3} \\
s_{2} & s_{3} & s_{1} \\
s_{3} & s_{1} & s_{2}
\end{array}\right]
$$

is a Latin square in the desired form.
Use L to define an operation • on the set $\left\{s_{1}, \ldots s_{n}\right\}$ as follows: define $s_{i} \cdot s_{j}$ to be whatever symbol is in cell (i, j). Does this define a group? If so, prove this claim; if not, construct an example that disproves the claim.
2. Consider the following method of turning a set of $n \times n$ mutually orthogonal Latin squares into a cryptographic scheme:

- For two parties A, B to communicate, we ask that they pick a pair of mutually orthogonal Latin square L_{1}, L_{2} from our set of orthogonal squares.
- Now, suppose that A wants to send some plaintext message of the form (i, j), where $i, j \in\{1, \ldots n\}$.
- To do this, have A send instead the pair (α, β), where α is the symbol in cell $L_{1}(i, j)$ and β is the symbol in cell $L_{2}(i, j)$.

Prove that B can always decode this received signal (α, β) uniquely.
3. Create two Latin squares, one of order 4 and another of order 5 . For each, find a minimal critical set. Prove that your sets are indeed minimal and critical.
4. Construct a (t, k) - secret sharing system, where both $t, k \geq 4$.

