Math/CS 103

Homework 16: Cryptography and Latin Squares

Due Friday, week 9	UCSB 2014
--------------------	-----------

Homework Problems.

Pick two of the following four problems to solve!

1. Take a $n \times n$ Latin square L filled with the symbols $\{s_1, \ldots, s_n\}$, such that its first row and first column consist of the symbols s_1, \ldots, s_n in order. For example,

$$\begin{bmatrix} s_1 & s_2 & s_3 \\ s_2 & s_3 & s_1 \\ s_3 & s_1 & s_2 \end{bmatrix}$$

is a Latin square in the desired form.

Use L to define an operation \cdot on the set $\{s_1, \ldots, s_n\}$ as follows: define $s_i \cdot s_j$ to be whatever symbol is in cell (i, j). Does this define a group? If so, prove this claim; if not, construct an example that disproves the claim.

- 2. Consider the following method of turning a set of $n \times n$ mutually orthogonal Latin squares into a cryptographic scheme:
 - For two parties A, B to communicate, we ask that they pick a pair of mutually orthogonal Latin square L_1, L_2 from our set of orthogonal squares.
 - Now, suppose that A wants to send some plaintext message of the form (i, j), where $i, j \in \{1, ..., n\}$.
 - To do this, have A send instead the pair (α, β) , where α is the symbol in cell $L_1(i, j)$ and β is the symbol in cell $L_2(i, j)$.

Prove that B can always decode this received signal (α, β) uniquely.

- 3. Create two Latin squares, one of order 4 and another of order 5. For each, find a minimal critical set. Prove that your sets are indeed minimal and critical.
- 4. Construct a (t, k)- secret sharing system, where both $t, k \ge 4$.