Math/CS $103 \quad$ Professor: Padraic Bartlett

Due Friday, Week 7
UCSB 2014

Pick two of the three problems below, and solve them!

1. A q-ary length n code C is called linear if the sum of any two codewords in C, thought of as elements in $(\mathbb{Z} / q \mathbb{Z})^{n}$, is also a codeword in C. Find a linear code. Find a nonlinear code. Is the Hamming $[7,4]$ code from problem set 11 linear?
2. A q-ary length n code C is called perfect if there is some integer t such that for any element $\mathbf{x} \in(\mathbb{Z} / q \mathbb{Z})^{n}$, there is a unique word in C within Hamming distance t of \mathbf{x}. Find a perfect code. Find a nonperfect code. Is the Hamming [7, 4] code from problem set 11 perfect?
3. A Hadamard matrix, which you may remember from last quarter, is the following object: a $n \times n$ matrix, with entries all ± 1, such that all of the columns are orthogonal. For example,

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

is a Hadamard matrix.
(a) For any $n=2^{k}$ for some k, find a Hadamard matrix.
(b) Take the columns of any $n \times n$ Hadamard matrix, and replace the -1 's with 0 's. This gives you a binary code, all of whose codewords are length n. What is the distance of this code? What is the information rate? (Fun fact: we used these codes to communicate with Mariner 9, the first spacecraft to orbit another planet!)

