The Chinese Remainder Theorem

Ziming Bian

University of California, Santa Barbara

June 7, 2014

Definition

What is the Chinese remainder theorem?

The Chinese remainder theorem is a result about congruence in number theory and its generalizations in abstract algebra.

The basic form is about a number n that divided by some divisors and leaves remainders

Example

Example: Here we have a look at a basic example.
What is the lowest number n that divided by 3 leaves a remainder of 2 , divided by 5 leaves a remainder of 3 , and divided by 7 leaves a remainder of 2

Solution:
Firstly, we need to find a number that can be divided by 5 and 7 and also divided by 3 leaves a remainder of 1 that number is 70 Secondly, we need to find a number that can divided by 3 and 7 and also divided by 5 leaves a remainder of 1 that number is 21
Thirdly, we need to find a number that can be divided by 3 and 5 and also divided by 7 leaves a remainder of 1 that number is 15

And the number we find is divided by 3 leaves a remainder 2 then $70 \times 2=140$
It is also divided by 5 leaves a remainder 3 then we have $21 \times 3=63$
Then it is divided by 7 leaves a remainder 2 then we have $15 \times 2=30$

Then $140+63+30=233$ because 63 and 30 are all divided by 3 then 233 and 140 have the same remainder divided by 3. The same thing happened with 233 and 63 divided by 5 and 233 and 30 divided by 7 . Then 233 is the number satisfied the question.
And the lowest common multiple of 3,5,7 are 105 so $233-105 \times 2=23$ is the answer we need to find.

Principle of the Chinese Remainder Theorem

We suppose that for $n \geq 2$, we have $m_{1}, m_{2}, m_{3}, \ldots,<m_{n}$ which are coprime to each other.
We suppose $M=m_{1} \times m_{2} \times m_{3} \times \ldots \times m_{n}$
Then we have
$M=m_{1} \times M_{1}=m_{2} \times M_{2}=m_{3} \times M_{3}=\ldots=m_{n} \times M_{n}$
For the following congruences:
$x \equiv c_{1}\left(\bmod m_{1}\right)$
$x \equiv c_{2}\left(\bmod m_{2}\right)$
$x \equiv c_{n}\left(\bmod m_{n}\right)$
The congruence $x \equiv M_{1} a_{1} c_{1}+M_{2} a_{2} c_{2}+\ldots+M_{n} a_{n} c_{n}$ have unique positive integer solution. (a_{i} satify $M_{i} a_{i} \equiv 1 \bmod m_{i}$, $\mathrm{i}=1,2, \ldots, \mathrm{n})$

The Chinese remainder theorem in polynomial

We suppose that $m_{1}(x), m_{2}(x), \ldots, m_{n}(x)$ are coprime to each other, then we can have polynomials $a_{1}(x), a_{2}(x), \ldots, a_{n}(x)$
Then there must exist an polynomial, which satisfy:
$f(x) \equiv a_{1}(x)\left(\bmod m_{1}(x)\right)$
$f(x) \equiv a_{2}(x)\left(\bmod m_{2}(x)\right)$
$f(x) \equiv a_{n}(x)\left(\bmod m_{n}(x)\right)$
When the degree of $\mathrm{f}(\mathrm{s})$ is not higher than $\mathrm{m}(\mathrm{x})$
$\left(m(x)=m_{1}(x) m_{2}(x) \ldots m_{n}(x)\right)$
There is only one $f(x)$

When $m_{i}(x)=X-B_{i} \in Q[x], \mathrm{i}=1,2, \ldots, \mathrm{n}$,
$m_{i}(x)=m_{i}\left(b_{i}\right)\left(\bmod \left(x-b_{i}\right)\right)$
Then
$f(x)=a_{1}(x)\left(\bmod m_{1}\left(x-b_{1}\right)\right)$
$f(x)=a_{2}(x)\left(\bmod m_{2}\left(x-b_{2}\right)\right)$
$f(x)=a_{n}(x)\left(\bmod m_{n}\left(x-b_{n}\right)\right)$
the degree of $f(x)$ is not higher than n there is only one $f(x)$ $f(x)=a_{i}(\bmod (x-b i))$ is same as $f\left(b_{i}\right)=a_{i}(\mathrm{i}=1,2, \ldots, \mathrm{n})$
Then we can have if there are $b_{i}(i=1,2, \ldots, n)$ and every b_{i} is different, and any $a_{i}(i=1,2, n)$ there exist only one $f(x)$ the degree is lower than n to let $f\left(b_{i}\right)=a_{i}(i=1,2, \ldots, n)$

If we can find the polynomial $M_{i}(x) \mathrm{i}=1,2, \ldots, \mathrm{n}$ to let $\left.M_{i}(x)=1\left(\bmod x-b_{i}\right)\right) M_{i}(x)=0\left(\bmod \left(x-b_{j}\right)\right), M_{i}(x)=0$ $(\bmod (x-b j)) i \neq j$
Then we can find $f(x)=a_{1} M_{1}(x)+a_{2} M_{2}(x)++a_{n} M_{n}(x)$

$$
=\sum_{n}^{j=1} a_{j} \prod_{n}^{i=1} \frac{x-b_{i}}{b_{j}-b_{i}}(i \neq j)
$$

This is the Lagrange interpolation polynomial

Example

Calculate $0^{2}+1^{2}+2^{2}++(n-1)^{2}$
Proof: We suppose the polynomial
$f(n)=0^{2}+1^{2}+2^{2}++(n-1)^{2}$; n states for the number of terms.
Then we have $f(0)=0, f(1)=0, f(2)=1, f(3)=5$
Then we can have $\mathrm{f}(\mathrm{n})=0 * M_{1}(n)+0 * M_{2}(n)+1 * M_{3}(n)+5 *$
$M_{4}(n)=1 \times \frac{(n-0)(n-1)(n-3)}{(2-0)(2-1)(2-3)}+5 * \frac{(n-0)(n-1)(n-2)}{(3-0)(3-1)(3-2)}$
$=\frac{1}{6}(n(n-1)(2 n-1)$

Example

If the $\mathrm{f}(\mathrm{x})$ have the remainder of each $x^{2}+1, x^{2}+2$ with $4 x+4,4 x+8$
What is the remainder of $f(x)$ divided by $\left(x^{2}+1\right)\left(x^{2}+2\right)$
Solution: $f(x)=4 x+4 \bmod \left(x^{2}+1\right)$
$f(x)=4 x+8 \bmod \left(x^{2}+2\right)$
And because $x^{2}+1$ and $x^{2}+2$ are relatively prime
$(-1) x^{2}+1+x^{2}+2=1$
Then we can get $\mathrm{f}(\mathrm{x})=(4 x+4)\left(x^{2}+2\right)+(4 x+8)(-1)\left(x^{2}+1\right)$ $\bmod \left(x^{2}+1\right)\left(x^{2}+2\right)$
Then the answer is $4 x-4 x^{2}$

Example

If $f(x) \equiv 4 \bmod (x-1), f(x) \equiv 8 \bmod (x-2), f(x) \equiv 16$ $\bmod (x-3)$
What is remainder of $f(x)$ divided by $(x-1)(x-2)(x-3)$?
Solution:Let $f(x)=p(x)(x-1)(x-2)(x-3)+r(x)$
Degree of $r(x)$ is lower than 3
We can have this from the problem
$r(1)=f(1)=4$
$r(2)=f(2)=8$
$r(3)=f(3)=16$
Then we can get the $r(x)=$
$4 \times \frac{4(x-2)(x-3)}{(1-2)(1-3)}+8 \times \frac{(x-1)(x-3)}{(2-1)(2-3)}+16 \times \frac{(x-1)(x-2)}{(3-1)(3-2)}=2 x^{2}-2 x+4$

Secret sharing using Chinese Remainder Theorem

$A_{1}, A_{2}, \ldots, A_{n}$ are n relatively prime numbers
If there is integer y that have the remainder of $B_{1}, B_{2}, \ldots, B_{n}$ divided by A_{1}, \ldots, A_{n}.
Then we need to find what Y is.
Let $M=A_{1} \times A_{2} \times \ldots \times A_{n}$
X_{1} are all the integers that can be divided by $A_{2}, A_{3}, \ldots, A_{n}$
Y_{1} are all the integers that can be divided by $A_{2} \times \ldots \times A_{n}$ and leaves remainder of B_{1} divided by A_{1}.
X_{2} are all the integers that can be divided by $A_{1} \times A_{2} \times \ldots \times A_{n}$
Y_{2} are all the integers that can be divided by $A_{1} \times A_{2} \times \ldots \times A_{n}$ and leaves a remainder B_{2} divided by A_{2}
X_{i} are all the integers that can be divided by
$A_{1}, A_{2}, A_{i}-1, A_{i}+1, \ldots, A n$
Y_{i} are all the integers that can be divided by
$A_{1}, A_{2}, A_{I}-1, A_{I}+1, A_{n}$ and leaves a remainder of B_{i} divided by A_{i}
$X_{1}=A_{2} \times A_{3} \times \ldots \times A_{n} \times m=\frac{M \times m}{A_{1}}$
$X_{2}=A_{1} \times A_{3} \times \ldots \times A_{n} \times m=\frac{M \times M}{A_{2}}$
m are any integers
$X_{n}=A_{1} \times A_{2} \times \ldots \times A_{N}-1 \times M=\frac{M \times m}{A n}$
If F_{i} satisfied both X_{i} and Y_{i}, and F_{i} is the smallest positive integer in Y_{i}
$Y_{1}=F_{1}+A-1 \times A_{2} \times \ldots \times A_{n} \times M=F_{1}+M \times m$
$Y_{n}=F_{n}+A_{1} \times A_{2} \times \ldots \times A_{n} \times m=F_{n}+M \times m$
Then $Y=Y_{1}+Y_{2}+Y_{3}+. . Y_{N}=F_{1}+F_{2}++F_{N}+M \times m$

Let the Y be the cleartext and $B 1, \ldots B n$ be the ciphertext.
$A_{1}, \ldots A_{n}$ and N be the key.
The steps are like these:
First choose $A_{1}, \ldots A_{n}$ to be the key
Then to calculate product of these numbers M
Third calculate the $F_{1}, F_{2}, \ldots, F_{n}$
Then $Y=Y_{1}+Y_{2}+\ldots Y_{n}=F_{1}+F_{2}+F_{3}+\ldots+F_{n}+M \times m$
We can have $m=\frac{Y-\left(F_{1}+F_{2}++F_{n}\right)}{M}$
At last let Y divided by $A_{1}, \ldots A_{n}$ to get the remainders $B 1, \ldots B n$ to be the ciphertext.

Deciphering

We know the ciphertext $B_{1} \ldots B_{N}$ and the key $A_{1} \ldots A_{n}$ and N and calculate the $F_{1} \ldots F_{N}$ We can get Y by the

$$
Y=Y_{1}+Y_{2}+\ldots Y_{n}=F_{1}+F_{2 . .}+F_{N}+M \times m
$$

Cleartext $X=200$ key $=5,7,11$ ciphertext $=1,6$
$F_{1}=231, F_{2}=55, F_{3}=175$
$m=2001-(231+55+175)(5 \times 7 \times 11)=4$ be the other secret key.
Decipher:
$Y=y_{1}+. . y_{n}=F_{1}+f_{2}+. . F_{n}+M \times m=$
$221+175+55+5 \times 7 \times 11 \times 4=2001$

Thank you

Thanks for listening!!!

