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Abstract

The Cantor set is a famous set first introduced by German
mathematician Georg Cantor in 1883. It is simply a subset of
the interval [0,1], but it has a number of remarkable and deep
properties. We will first describe the construction and the
formula of the Cantor ternary set, which is the most common
modern construction, and then prove some interesting
properties of the set.
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Preliminaries

Definition: If A and B are sets, the union of A and B, written
A ∪ B, is the set of all objects that belong to either A or B or
both. A ∪ B = {x : x ∈ A or x ∈ B}

Definition: If A and B are sets, the intersection of A and B,
written A ∩ B, is the set of all objects that belong to both A and
B. A ∩ B = {x : x ∈ A and x ∈ B}

Example:
Let A = {1,2,3},B = {2,3,4}. Then

A ∩ B = {2,3},A ∪ B = {1,2,3,4}
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Definition: Let Λ be a set, ans suppose for each λ ∈ Λ, a
subset Aλ of a given set S is specified. The collection of sets
Aλ is called an indexed family of subsets of S with Λ as the
index set. We denote this by {Aλ}λ∈Λ

Definition: If {Aλ}λ∈Λ is an indexed family of sets, define⋂
λ∈Λ

Aλ = {x : x ∈ Aλfor allλ ∈ Λ}

⋃
λ∈Λ

Aλ = {x : x ∈ Aλfor someλ ∈ Λ}

Example:
Let An = {n} for each n ∈ N. Then

∞⋂
n=1

An = ∅

∞⋃
n=1

An = N
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Construction

The Cantor ternary set is created by repeatedly deleting the
open middle thirds of a set of line segments.

One starts by deleting the open middle third
(

1
3
,
2
3

)
from the

interval [0,1], leaving two line segments:
[
0,

1
3

]
∪
[

2
3
,1
]
.

Next, the open middle third of each of these remaining
segments is deleted, leaving four line segments:[
0,

1
9

]
∪
[

2
9
,
1
3

]
∪
[

2
3
,
7
9

]
∪
[

8
9
,1
]
.

This process is continued to infinity.
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The picture below shows the firs four steps of this process:
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Formula
Consider the following set:

C =
∞⋂

n=1

3n−1−1⋂
k=0

([
0,

3k + 1
3n

]
∪
[

3k + 2
3n ,1

])

Does Cantor ternary set contain set C? Yes.

Does set C contain Cantor ternary set? Yes.

Thus, set C is Cantor ternary set.

Another explicit formula for Cantor set is

C = [0,1] \
∞⋃

n=1

3n−1−1⋃
k=0

(
3k + 1

3n ,
3k + 2

3n

)
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Properties and Proofs

Now we will prove some interesting properties of C.
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Property 1

Let x = 0.a1a2a3... be the base 3 expansion of a number
x ∈ [0,1]. Then x ∈ C iff an ∈ {0,2} for all n ∈ N

Before we prove property 1, we first have a look at base 3
expansion of a number.
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Fractions in base b

A fraction N in base b is represented in terms of the negative
powers of b:
N = a1b−1 + a2b−2 + a3b−3 + ...+ anb−n (∀i ∈ [0,n],ai ∈ (0,b))

How do we convert 0.a1a2a3...10 to another base?

(1) First, pick up the coefficients a1,a2, ...an.
(2) Multiply 0.a1a2a3...10 by b.
(3) The integer part of the result is a1.
(4) If the remaining part is zero, stop.
(5) Otherwise, let m = 2.
(6) Multiply the remaining part by b.
(7) The integer part of the result is am. If the remaining part is
zero, stop.
(8) Otherwise, let m = m + 1 and goto step (6).
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Example:

Convert 0.37510 to base 2

2N = 2× 0.375 = 0.75 −→ a1 = 0, r1 = 0.75− b0.75c = 0.75

2r1 = 2× 0.75 = 1.5 −→ a2 = 1, r2 = 1.5− b1.5c = 0.5

2r2 = 2× 0.5 = 1 −→ a3 = 1, r3 = 1− b1c = 0

Since r3 = 0, we stop. 0.37510 = 0.0112
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Proof for property 1

Let x = 0.a1a2a3... be the base 3 expansion of a number
x ∈ [0,1].

From the way to convert a fraction to another base, we see that
each an corresponds to which third the number is in.

For example, for the number 0.2013, 2 means that it is in the

third third of [0,1], 0 means that it is in the first third of
[

2
3
,1
]

(the third third of [0,1]), and 1 means that it is in the second

third of
[

2
3
,
5
9

]
(the first third of

[
2
3
,1
]
).
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Assume that there exists some k ∈ N such that ak = 1, then x
will be in the middle third of some interval whose middle third
will be removed, which means that x /∈ C

On the other hand, by the definition of base 3 expansion, if
an ∈ {0,2} for all n ∈ N, x will never be in the middle third of
any interval whose middle third will be removed. Thus, x ∈ C.
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Property 2

The Cantor set is uncountable.

To prove property 2, we need to use the concept of surjective
function and cardinality.

Before we prove property 2, we first have a look at surjective
function and cardinality.
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Surjective Function and Cardinality

Definition: a function f with domain X and codomain Y is
surjective if for every y in Y there exists at least one x in X such
that f (x) = y .

The cardinality of the domain of a surjective function is greater
than or equal to the cardinality of its codomain, that is, if
f : X → Y is a surjective function, then X has at least as many
elements as Y.
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Proof for property 2

To show that the Cantor set is uncountable, we need to
construct a function f from the Cantor set C to the closed
interval [0,1] that is surjective.

Consider the point in C in terms of base 3.

From property 1, we have that for any x = 0.a1a2...3 ∈ [0,1],
x ∈ C iff an ∈ {0,2} for all n ∈ N



Title Abstract Preliminaries Construction and Formula Properties and Proofs

Proof for property 2

To show that the Cantor set is uncountable, we need to
construct a function f from the Cantor set C to the closed
interval [0,1] that is surjective.

Consider the point in C in terms of base 3.

From property 1, we have that for any x = 0.a1a2...3 ∈ [0,1],
x ∈ C iff an ∈ {0,2} for all n ∈ N



Title Abstract Preliminaries Construction and Formula Properties and Proofs

Proof for property 2

To show that the Cantor set is uncountable, we need to
construct a function f from the Cantor set C to the closed
interval [0,1] that is surjective.

Consider the point in C in terms of base 3.

From property 1, we have that for any x = 0.a1a2...3 ∈ [0,1],
x ∈ C iff an ∈ {0,2} for all n ∈ N



Title Abstract Preliminaries Construction and Formula Properties and Proofs

Proof for property 2

To show that the Cantor set is uncountable, we need to
construct a function f from the Cantor set C to the closed
interval [0,1] that is surjective.

Consider the point in C in terms of base 3.

From property 1, we have that for any x = 0.a1a2...3 ∈ [0,1],
x ∈ C iff an ∈ {0,2} for all n ∈ N



Title Abstract Preliminaries Construction and Formula Properties and Proofs

Then we construct a function f : C → [0,1] which replaces all
the 2s by 1s, and interprets the sequence as a binary
representation of a real number. In a formula,

f

( ∞∑
k=1

ak3−k

)
=
∞∑

k=1

ak2−k

2

.

For any number y in [0,1], its binary representation can be
translated into a ternary representation of a number x in C by
replacing all the 1s by 2s, so the range of f is [0,1]. Thus, the
cardinality of C is greater than or equal to the cardinality of
[0,1], which means that C is uncountable.
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Property 3

The Cantor set has a length of zero, which means that it has no
intervals.
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Proof for property 3

We will prove C has a length of zero by showing that the length
of the complement of C relative to [0,1] is 1.

From the construction of C, we see that at the nth step, we are

removing 2n−1 intervals, all of which are of length
1
3n .

The sum of the length of all intervals removed is

∞∑
n=1

2n−1
(

1
3n

)
=

1
3

∞∑
n=0

2
3

n
=

1
3

 1

1− 2
3

 = 1

Thus, the length of the complement of C relative to [0,1] is 1,
which means that C has a length of zero.
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Thank you

Thank you all for listening to my presentation.

Questions?
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