Finding Perfect Matchings and Completing Latin Rectangles

Nicholas Dibble-Kahn

University of California Santa Barbara

April 3, 2014

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Definitions
- The Problem

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Definitions
- The Problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Set up

- Definitions
- The Problem
- The Set up
- The Process

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Definitions
- The Problem
- The Set up
- The Process

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The Proof

- Definitions
- The Problem
- The Set up
- The Process
- The Proof
- Latin Rectangles

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Graph Terminology

A Graph is a collection of vertices, and edges between them

(ロ)、(型)、(E)、(E)、 E) の(()

Graph Terminology

► A Graph is a collection of vertices, and edges between them

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 Edges are defined as the unique connection between two different vertices

Graph Terminology

- A Graph is a collection of vertices, and edges between them
- Edges are defined as the unique connection between two different vertices
- The degree of a vertex in a graph is the number of edges that vertex is connected to

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bipartite Graph

Definition: A Bipartite Graph is a graph such that every vertex can be put into one of two groups, V_1 and V_2 , with the property that all edges connect vertices in V_1 to vertices in V_2 (no edges go between vertices in the same group)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bipartite Graph

Definition: A Bipartite Graph is a graph such that every vertex can be put into one of two groups, V_1 and V_2 , with the property that all edges connect vertices in V_1 to vertices in V_2 (no edges go between vertices in the same group)

Example:

Perfect Matching

Definition: A Perfect Matching is a bipartite graph such that there is exactly one edge connected to each vertex

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Perfect Matching

Definition: A Perfect Matching is a bipartite graph such that there is exactly one edge connected to each vertex

Example:

Problem: We are given a **Bipartite Graph**, G, with n vertices of degree d in sets V_1 and V_2

We are asked:

Problem: We are given a **Bipartite Graph**, G, with n vertices of degree d in sets V_1 and V_2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We are asked:

Can we find d Perfect Matchings of G?

Problem: We are given a **Bipartite Graph**, G, with n vertices of degree d in sets V_1 and V_2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We are asked:

- Can we find d Perfect Matchings of G?
- How can we find these Perfect Matchings?

▶ Given: G is is composed of two sets of vertices: V₁ and V₂ that each have n elements

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ▶ Given: G is is composed of two sets of vertices: V₁ and V₂ that each have n elements
- We shall label the vertices in V₁ the numbers 1', 2',...,(n-1)', n'

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- ▶ Given: G is is composed of two sets of vertices: V₁ and V₂ that each have n elements
- We shall label the vertices in V₁ the numbers 1', 2',...,(n-1)', n'

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

And label the vertices in V_2 the numbers 1, 2,...,(n-1), n

This may seem like a trivial task but let us consider a simple case:

・ロト・(四)・(日)・(日)・(日)・(日)

This may seem like a trivial task but let us consider a simple case:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

If we randomly pick edges we could get the following:

(ロ)、(型)、(E)、(E)、 E) の(()

If we randomly pick edges we could get the following:

This is notably not a perfect matching, and we cannot easily make it one because there does not exist an edge in our initial graph from 2' to 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let us consider the case when d=n; there is an edge from every vertex in V_1 to every vertex in V_2 , and we can model this as a table:

Let us consider the case when d=n; there is an edge from every vertex in V_1 to every vertex in V_2 , and we can model this as a table:

Example: let d=n=4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let us consider the case when d=n; there is an edge from every vertex in V_1 to every vertex in V_2 , and we can model this as a table:

Example: let d=n=4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Each column is headed by a vertex in V₁

Let us consider the case when d=n; there is an edge from every vertex in V_1 to every vertex in V_2 , and we can model this as a table:

Example: let d=n=4

- Each column is headed by a vertex in V_1
- ► Each other number in the column is a vertex in V₂ such that there is an edge between the head of a column and each element in its column

If instead of having our table represent d=n we wanted some other d less than n, we can do this by simply crossing off edges that are not present

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If instead of having our table represent d=n we wanted some other d less than n, we can do this by simply crossing off edges that are not present

Example: n=4, d=2

・ロト ・ 同ト ・ ヨト ・ ヨト

3

If instead of having our table represent d=n we wanted some other d less than n, we can do this by simply crossing off edges that are not present

Example: n=4, d=2

For edges that we removed from the d=n graph, we put an X in the array to indicate that there is not an edge

We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's

 We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From here we shall start picking elements, in a specific fashion, to find a single perfect matching

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1, from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1, from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- ▶ When we pick a vertex of V₂ to draw an edge to a specific vertex in V₁,

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1, from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- ▶ When we pick a vertex of V₂ to draw an edge to a specific vertex in V₁, we cannot not pick another edge that shares either of these two vertices

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1, from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- ▶ When we pick a vertex of V₂ to draw an edge to a specific vertex in V₁, we cannot not pick another edge that shares either of these two vertices
- On the table this corresponds to picking an element, E, in a column, C', and then not picking another element E in a different column

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1, from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- ▶ When we pick a vertex of V₂ to draw an edge to a specific vertex in V₁, we cannot not pick another edge that shares either of these two vertices
- On the table this corresponds to picking an element, E, in a column, C', and then not picking another element E in a different column and likewise not pick another element from column C'

The last, and most important step, is determining which points to pick

- The last, and most important step, is determining which points to pick
- ► To answer this we shall define a K_c to be the number of elements in a column C' that are not X,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- The last, and most important step, is determining which points to pick
- ► To answer this we shall define a K_c to be the number of elements in a column C' that are not X,
- ► If we consider all of the columns, then we will pick any element from the column with the smallest value for K_c

- The last, and most important step, is determining which points to pick
- ► To answer this we shall define a K_c to be the number of elements in a column C' that are not X,
- ► If we consider all of the columns, then we will pick any element from the column with the smallest value for K_c

To best understand this process, let us find a perfect matching of the previous example:

To best understand this process, let us find a perfect matching of the previous example:

1′	2′	3′	4′	
<i>X</i> ₁	X_1	1	1	
2	X_2	2	X_2	
<i>X</i> ₃	3	<i>X</i> ₃	3	
4	4	X_4	X_4	

As $K_c = 2$ for all the columns we can pick a random element from any of the columns, let us then arbitrarily pick column 2' element 3

Thus having picked (2',3) we shall make all other elements in column 2' and row 3 X:

1′	2′	3′	4′
X_1	<i>X</i> ₁	1	1
2	X_2	2	X_2
<i>X</i> ₃	3	<i>X</i> ₃	3
4	4	X_4	X_4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Thus having picked (2',3) we shall make all other elements in column 2' and row 3 X:

1′	2′	3′	4′
X_1	<i>X</i> ₁	1	1
2	X_2	2	<i>X</i> ₂
X_3	3	<i>X</i> ₃	X_3
4	X_4	X_4	X_4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

There are now three rows left. $K_1 = K_3 = 2$ while $K_4 = 1$ thus we must pick from column 4' the element 1

1′	2′	3′	4′
X_1	<i>X</i> ₁	1	1
2	X_2	2	X_2
X_3	3	<i>X</i> ₃	<i>X</i> ₃
4	X_4	X_4	X_4

Having picked (4',1) we must now X out all other elements in Column 4' and row 1:

1′	2′	3′	4′
X_1	X_1	1	1
2	X_2	2	X_2
<i>X</i> ₃	3	<i>X</i> ₃	X_3
4	X_4	X_4	X_4

Having picked (4',1) we must now X out all other elements in Column 4' and row 1:

1′	2′	3′	4′
X_1	X_1	X_1	1
2	X_2	2	X_2
<i>X</i> ₃	3	<i>X</i> ₃	X_3
4	X_4	X_4	X_4

We now have that $K_1 = 2$ and $K_3 = 1$ so we must pick from column 3' element 2:

1′	2′	3′	4′
X_1	X_1	X_1	1
2	X_2	2	X_2
<i>X</i> ₃	3	<i>X</i> ₃	X_3
4	X_4	X_4	X_4

Putting X's in the appropriate places yields:

Leaving only element (1',4) to pick. The edges defined by (1',4), (2',3), (3', 2), and (4',1) thus form a perfect matching:

イロト イヨト イヨト

3

Claim: That the process detailed above will give a perfect matching

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some K_{A0} were to become 0 (such that we did not yet pick an element from column A'₀)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some K_{A0} were to become 0 (such that we did not yet pick an element from column A'₀)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

► If we look at the step in the process before K_{A0} = 0 then column A₀ must have had an element, e₀

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some K_{A0} were to become 0 (such that we did not yet pick an element from column A'₀)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► If we look at the step in the process before K_{A0} = 0 then column A₀ must have had an element, e₀
- Because we must pick from the column with the fewest elements to pick from,

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some K_{A0} were to become 0 (such that we did not yet pick an element from column A'₀)
- ► If we look at the step in the process before K_{A0} = 0 then column A₀ must have had an element, e₀
- ► Because we must pick from the column with the fewest elements to pick from, the only reason we would not have select (A'₀, e₀) would be if there were another column, A'₁, that also only had one element, e₁, left to pick

(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some K_{A0} were to become 0 (such that we did not yet pick an element from column A'₀)
- ► If we look at the step in the process before K_{A0} = 0 then column A₀ must have had an element, e₀
- ► Because we must pick from the column with the fewest elements to pick from, the only reason we would not have select (A'₀, e₀) would be if there were another column, A'₁, that also only had one element, e₁, left to pick
- And specifically the only reason (A'₁, e₁) would prevent (A'₀, e₀) from getting chosen is if e₁ = e₀ so as to then change e₀ to an X

► If we now look at the pick that lead to K_{A0} = K_{A1} = 1 then the columns A'₀ and A'₁ must've had a second element in them.

(ロ)、(型)、(E)、(E)、 E) の(()

- ► If we now look at the pick that lead to K_{A0} = K_{A1} = 1 then the columns A'₀ and A'₁ must've had a second element in them.
- ▶ We get that the only reason we would not have selected either (A'₀, a₀) or (A'₁, a₁) is if there was a third column, A'₂ that had also had at most two elements left.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► If we now look at the pick that lead to K_{A0} = K_{A1} = 1 then the columns A'₀ and A'₁ must've had a second element in them.
- ▶ We get that the only reason we would not have selected either (A'₀, a₀) or (A'₁, a₁) is if there was a third column, A'₂ that had also had at most two elements left.
- ▶ For A'_2 to be selected and leave behind the situation we had above (going one step back from $K_{A_1} = 0$) we get that all three columns must've shared an element that was selected in column A'_2 , and we shall call this element e_2

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from
- ► We also get that these P+1 rows must share at least one element in common so as to lead to the scenario of P-1 picks away from K_{A1} = 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from
- ► We also get that these P+1 rows must share at least one element in common so as to lead to the scenario of P-1 picks away from K_{A1} = 0
- If we let P=n-d then we arrive at the fact that there are (n-d)+1 rows that have at least 1 element, E, in common from which to choose

- ► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from
- ► We also get that these P+1 rows must share at least one element in common so as to lead to the scenario of P-1 picks away from K_{A1} = 0
- If we let P=n-d then we arrive at the fact that there are (n-d)+1 rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph d=n

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from
- We also get that these P+1 rows must share at least one element in common so as to lead to the scenario of P-1 picks away from K_{A1} = 0
- If we let P=n-d then we arrive at the fact that there are (n-d)+1 rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph d=n which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times,

- ► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from
- We also get that these P+1 rows must share at least one element in common so as to lead to the scenario of P-1 picks away from K_{A1} = 0
- If we let P=n-d then we arrive at the fact that there are (n-d)+1 rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph d=n which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times, but we now have a row, E, can be chosen by n-d+1 columns, thus

- ► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from
- We also get that these P+1 rows must share at least one element in common so as to lead to the scenario of P-1 picks away from K_{A1} = 0
- If we let P=n-d then we arrive at the fact that there are (n-d)+1 rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph d=n which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times, but we now have a row, E, can be chosen by n-d+1 columns, thus WE HAVE A CONTRADICTION!

- ► If we continue this process going P picks back from K_{A1} = 0 we are considering P+1 columns, A₀, A₁, ...A_p, each of which has P elements to choose from
- We also get that these P+1 rows must share at least one element in common so as to lead to the scenario of P-1 picks away from K_{A1} = 0
- If we let P=n-d then we arrive at the fact that there are (n-d)+1 rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph d=n which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times, but we now have a row, E, can be chosen by n-d+1 columns, thus WE HAVE A CONTRADICTION!
- This means that the process detailed in this presentation will always yield a perfect matching

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column Example of a 5 by 5 Latin Square:

1	2	3	4	5
2	4	5	1	3
3	5	4	2	1
4	3	1	5	2
5	1	2	3	4

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column Example of a 5 by 5 Latin Square:

1	2	3	4	5
2	4	5	1	3
3	5	4	2	1
4	3	1	5	2
5	1	2	3	4

Definition: A Latin Rectangle is a partial Latin Square that has the first D rows given and the rest blank

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column Example of a 5 by 5 Latin Square:

1	2	3	4	5
2	4	5	1	3
3	5	4	2	1
4	3	1	5	2
5	1	2	3	4

Definition: A Latin Rectangle is a partial Latin Square that has the first D rows given and the rest blank Example of a 2 by 4 Latin Rectangle:

1	2	3	4
2	4	5	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph	Analogous Features of
Features	Latin Squares

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph	Analogous Features of
Features	Latin Squares
Each vertex in V_1	One specific Column

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph	Analogous Features of
Features	Latin Squares
Each vertex in V_1	One specific Column
Each vertex in V_2	One specific symbol

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph	Analogous Features of
Features	Latin Squares
Each vertex in V_1	One specific Column
Each vertex in V_2	One specific symbol
Each perfect matching	One specific row

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph	Analogous Features of
Features	Latin Squares
Each vertex in V_1	One specific Column
Each vertex in V_2	One specific symbol
Each perfect matching	One specific row
The common degree of all vertices	The number of blank rows

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph	Analogous Features of
Features	Latin Squares
Each vertex in V_1	One specific Column
Each vertex in V_2	One specific symbol
Each perfect matching	One specific row
The common degree of all vertices	The number of blank rows

As we can create d perfect matchings of a Bipartite Graph, we can complete the Latin Rectangle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you

Thank You all for listening to this presentation Questions?

(ロ)、(型)、(E)、(E)、 E) の(()