
Finding Perfect Matchings
and

Completing Latin Rectangles

Nicholas Dibble-Kahn

University of California Santa Barbara

April 3, 2014



Outline

I Definitions

I The Problem
I The Set up
I The Process
I The Proof
I Latin Rectangles



Outline

I Definitions
I The Problem

I The Set up
I The Process
I The Proof
I Latin Rectangles



Outline

I Definitions
I The Problem
I The Set up

I The Process
I The Proof
I Latin Rectangles



Outline

I Definitions
I The Problem
I The Set up
I The Process

I The Proof
I Latin Rectangles



Outline

I Definitions
I The Problem
I The Set up
I The Process
I The Proof

I Latin Rectangles



Outline

I Definitions
I The Problem
I The Set up
I The Process
I The Proof
I Latin Rectangles



Graph Terminology

I A Graph is a collection of vertices, and edges between them

I Edges are defined as the unique connection between two
different vertices

I The degree of a vertex in a graph is the number of edges that
vertex is connected to



Graph Terminology

I A Graph is a collection of vertices, and edges between them
I Edges are defined as the unique connection between two

different vertices

I The degree of a vertex in a graph is the number of edges that
vertex is connected to



Graph Terminology

I A Graph is a collection of vertices, and edges between them
I Edges are defined as the unique connection between two

different vertices
I The degree of a vertex in a graph is the number of edges that

vertex is connected to



Bipartite Graph
Definition: A Bipartite Graph is a graph such that every vertex
can be put into one of two groups, V1 and V2, with the property
that all edges connect vertices in V1 to vertices in V2 (no edges go
between vertices in the same group)

Example:



Bipartite Graph
Definition: A Bipartite Graph is a graph such that every vertex
can be put into one of two groups, V1 and V2, with the property
that all edges connect vertices in V1 to vertices in V2 (no edges go
between vertices in the same group)

Example:



Perfect Matching
Definition: A Perfect Matching is a bipartite graph such that
there is exactly one edge connected to each vertex

Example:



Perfect Matching
Definition: A Perfect Matching is a bipartite graph such that
there is exactly one edge connected to each vertex

Example:



The Problem

Problem: We are given a Bipartite Graph, G, with n vertices of
degree d in sets V1 and V2

We are asked:

I Can we find d Perfect Matchings of G?
I How can we find these Perfect Matchings?



The Problem

Problem: We are given a Bipartite Graph, G, with n vertices of
degree d in sets V1 and V2

We are asked:
I Can we find d Perfect Matchings of G?

I How can we find these Perfect Matchings?



The Problem

Problem: We are given a Bipartite Graph, G, with n vertices of
degree d in sets V1 and V2

We are asked:
I Can we find d Perfect Matchings of G?
I How can we find these Perfect Matchings?



The Problem

I Given: G is is composed of two sets of vertices: V1 and V2
that each have n elements

I We shall label the vertices in V1 the numbers 1’, 2’,...,(n-1)’,
n’

I And label the vertices in V2 the numbers 1, 2,...,(n-1), n



The Problem

I Given: G is is composed of two sets of vertices: V1 and V2
that each have n elements

I We shall label the vertices in V1 the numbers 1’, 2’,...,(n-1)’,
n’

I And label the vertices in V2 the numbers 1, 2,...,(n-1), n



The Problem

I Given: G is is composed of two sets of vertices: V1 and V2
that each have n elements

I We shall label the vertices in V1 the numbers 1’, 2’,...,(n-1)’,
n’

I And label the vertices in V2 the numbers 1, 2,...,(n-1), n



The Problem

This may seem like a trivial task but let us consider a simple case:



The Problem

This may seem like a trivial task but let us consider a simple case:



The Problem
If we randomly pick edges we could get the following:

I This is notably not a perfect matching, and we cannot easily
make it one because there does not exist an edge in our initial
graph from 2’ to 1



The Problem
If we randomly pick edges we could get the following:

I This is notably not a perfect matching, and we cannot easily
make it one because there does not exist an edge in our initial
graph from 2’ to 1



The Set Up
Let us consider the case when d=n; there is an edge from every
vertex in V1 to every vertex in V2, and we can model this as a
table:

Example: let d=n=4

I Each column is headed by a vertex in V1
I Each other number in the column is a vertex in V2 such that

there is an edge between the head of a column and each
element in its column



The Set Up
Let us consider the case when d=n; there is an edge from every
vertex in V1 to every vertex in V2, and we can model this as a
table:
Example: let d=n=4

I Each column is headed by a vertex in V1
I Each other number in the column is a vertex in V2 such that

there is an edge between the head of a column and each
element in its column



The Set Up
Let us consider the case when d=n; there is an edge from every
vertex in V1 to every vertex in V2, and we can model this as a
table:
Example: let d=n=4

I Each column is headed by a vertex in V1

I Each other number in the column is a vertex in V2 such that
there is an edge between the head of a column and each
element in its column



The Set Up
Let us consider the case when d=n; there is an edge from every
vertex in V1 to every vertex in V2, and we can model this as a
table:
Example: let d=n=4

I Each column is headed by a vertex in V1
I Each other number in the column is a vertex in V2 such that

there is an edge between the head of a column and each
element in its column



The Set Up
If instead of having our table represent d=n we wanted some other
d less than n, we can do this by simply crossing off edges that are
not present

Example: n=4, d=2

For edges that we removed from the d=n graph, we put an X in
the array to indicate that there is not an edge



The Set Up
If instead of having our table represent d=n we wanted some other
d less than n, we can do this by simply crossing off edges that are
not present
Example: n=4, d=2

For edges that we removed from the d=n graph, we put an X in
the array to indicate that there is not an edge



The Set Up
If instead of having our table represent d=n we wanted some other
d less than n, we can do this by simply crossing off edges that are
not present
Example: n=4, d=2

For edges that we removed from the d=n graph, we put an X in
the array to indicate that there is not an edge



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1,

from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1,

we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column

and likewise not pick another element from
column C’



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1,

from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1,

we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column

and likewise not pick another element from
column C’



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1,

from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1,

we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column

and likewise not pick another element from
column C’



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1, from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1,

we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column

and likewise not pick another element from
column C’



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1, from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1,

we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column

and likewise not pick another element from
column C’



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1, from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1, we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column

and likewise not pick another element from
column C’



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1, from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1, we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column

and likewise not pick another element from
column C’



The Process
I We can take a bipartite graph with d edges and construct a

table for it such that each column has d elements that are
not-X’s

I From here we shall start picking elements, in a specific
fashion, to find a single perfect matching

I Once we find a perfect matching we can delete it from our
graph to reduce d by 1, from which we can repeat the process
d times until the entire initial graph becomes partitioned into
d perfect matchings

I When we pick a vertex of V2 to draw an edge to a specific
vertex in V1, we cannot not pick another edge that shares
either of these two vertices

I On the table this corresponds to picking an element, E, in a
column, C’, and then not picking another element E in a
different column and likewise not pick another element from
column C’



The Process
I The last, and most important step, is determining which

points to pick

I To answer this we shall define a Kc to be the number of
elements in a column C’ that are not X,

I If we consider all of the columns, then we will pick any
element from the column with the smallest value for Kc

To best understand this process, let us find a perfect matching of
the previous example:

This is the table we start with



The Process
I The last, and most important step, is determining which

points to pick
I To answer this we shall define a Kc to be the number of

elements in a column C’ that are not X,

I If we consider all of the columns, then we will pick any
element from the column with the smallest value for Kc

To best understand this process, let us find a perfect matching of
the previous example:

This is the table we start with



The Process
I The last, and most important step, is determining which

points to pick
I To answer this we shall define a Kc to be the number of

elements in a column C’ that are not X,
I If we consider all of the columns, then we will pick any

element from the column with the smallest value for Kc

To best understand this process, let us find a perfect matching of
the previous example:

This is the table we start with



The Process
I The last, and most important step, is determining which

points to pick
I To answer this we shall define a Kc to be the number of

elements in a column C’ that are not X,
I If we consider all of the columns, then we will pick any

element from the column with the smallest value for Kc

To best understand this process, let us find a perfect matching of
the previous example:

This is the table we start with



The Process

To best understand this process, let us find a perfect matching of
the previous example:

1′ 2′ 3′ 4′

X1 X1 1 1
2 X2 2 X2

X3 3 X3 3
4 4 X4 X4

As Kc = 2 for all the columns we can pick a random element from
any of the columns, let us then arbitrarily pick column 2’ element 3



The Process

Thus having picked (2’,3) we shall make all other elements in
column 2’ and row 3 X:

1′ 2′ 3′ 4′

X1 X1 1 1
2 X2 2 X2

X3 3 X3 3
4 4 X4 X4



The Process

Thus having picked (2’,3) we shall make all other elements in
column 2’ and row 3 X:

1′ 2′ 3′ 4′

X1 X1 1 1
2 X2 2 X2

X3 3 X3 X3
4 X4 X4 X4



The Process

There are now three rows left. K1 = K3 = 2 while K4 = 1 thus we
must pick from column 4’ the element 1

1′ 2′ 3′ 4′

X1 X1 1 1
2 X2 2 X2

X3 3 X3 X3
4 X4 X4 X4



The Process

Having picked (4’,1) we must now X out all other elements in
Column 4’ and row 1:

1′ 2′ 3′ 4′

X1 X1 1 1
2 X2 2 X2

X3 3 X3 X3
4 X4 X4 X4



The Process

Having picked (4’,1) we must now X out all other elements in
Column 4’ and row 1:

1′ 2′ 3′ 4′

X1 X1 X1 1
2 X2 2 X2

X3 3 X3 X3
4 X4 X4 X4



The Process

We now have that K1 = 2 and K3 = 1 so we must pick from
column 3’ element 2:

1′ 2′ 3′ 4′

X1 X1 X1 1
2 X2 2 X2

X3 3 X3 X3
4 X4 X4 X4



The Process
Putting X’s in the appropriate places yields:

1′ 2′ 3′ 4′

X1 X1 X1 1
2 X2 2 X2

X3 3 X3 X3
4 X4 X4 X4

1′ 2′ 3′ 4′

X1 X1 X1 1
X2 X2 2 X2
X3 3 X3 X3
4 X4 X4 X4

Leaving only element (1’,4) to pick. The edges defined by (1’,4),
(2’,3), (3’, 2), and (4’,1) thus form a perfect matching:



The Proof
Claim: That the process detailed above will give a perfect matching

We will prove this by contradiction
I This process will always give some matching, but if this

matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)
I If we look at the step in the process before KA0 = 0 then

column A0 must have had an element, e0
I Because we must pick from the column with the fewest

elements to pick from,

the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick

I And specifically the only reason (A′
1, e1) would prevent

(A′
0, e0) from getting chosen is if e1 = e0 so as to then change

e0 to an X



The Proof
Claim: That the process detailed above will give a perfect matching
We will prove this by contradiction

I This process will always give some matching, but if this
matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)
I If we look at the step in the process before KA0 = 0 then

column A0 must have had an element, e0
I Because we must pick from the column with the fewest

elements to pick from,

the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick

I And specifically the only reason (A′
1, e1) would prevent

(A′
0, e0) from getting chosen is if e1 = e0 so as to then change

e0 to an X



The Proof
Claim: That the process detailed above will give a perfect matching
We will prove this by contradiction

I This process will always give some matching, but if this
matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)
I If we look at the step in the process before KA0 = 0 then

column A0 must have had an element, e0
I Because we must pick from the column with the fewest

elements to pick from,

the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick

I And specifically the only reason (A′
1, e1) would prevent

(A′
0, e0) from getting chosen is if e1 = e0 so as to then change

e0 to an X



The Proof
Claim: That the process detailed above will give a perfect matching
We will prove this by contradiction

I This process will always give some matching, but if this
matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)

I If we look at the step in the process before KA0 = 0 then
column A0 must have had an element, e0

I Because we must pick from the column with the fewest
elements to pick from,

the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick

I And specifically the only reason (A′
1, e1) would prevent

(A′
0, e0) from getting chosen is if e1 = e0 so as to then change

e0 to an X



The Proof
Claim: That the process detailed above will give a perfect matching
We will prove this by contradiction

I This process will always give some matching, but if this
matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)
I If we look at the step in the process before KA0 = 0 then

column A0 must have had an element, e0

I Because we must pick from the column with the fewest
elements to pick from,

the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick

I And specifically the only reason (A′
1, e1) would prevent

(A′
0, e0) from getting chosen is if e1 = e0 so as to then change

e0 to an X



The Proof
Claim: That the process detailed above will give a perfect matching
We will prove this by contradiction

I This process will always give some matching, but if this
matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)
I If we look at the step in the process before KA0 = 0 then

column A0 must have had an element, e0
I Because we must pick from the column with the fewest

elements to pick from,

the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick
I And specifically the only reason (A′

1, e1) would prevent
(A′

0, e0) from getting chosen is if e1 = e0 so as to then change
e0 to an X



The Proof
Claim: That the process detailed above will give a perfect matching
We will prove this by contradiction

I This process will always give some matching, but if this
matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)
I If we look at the step in the process before KA0 = 0 then

column A0 must have had an element, e0
I Because we must pick from the column with the fewest

elements to pick from, the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick

I And specifically the only reason (A′
1, e1) would prevent

(A′
0, e0) from getting chosen is if e1 = e0 so as to then change

e0 to an X



The Proof
Claim: That the process detailed above will give a perfect matching
We will prove this by contradiction

I This process will always give some matching, but if this
matching wasn’t perfect, there would be some vertices
without edges

I The only way this would happen in the process is if some KA0

were to become 0 (such that we did not yet pick an element
from column A′

0)
I If we look at the step in the process before KA0 = 0 then

column A0 must have had an element, e0
I Because we must pick from the column with the fewest

elements to pick from, the only reason we would not have
select (A′

0, e0) would be if there were another column, A′
1,

that also only had one element, e1, left to pick
I And specifically the only reason (A′

1, e1) would prevent
(A′

0, e0) from getting chosen is if e1 = e0 so as to then change
e0 to an X



The Proof

I If we now look at the pick that lead to KA0 = KA1 = 1 then
the columns A′

0 and A′
1 must’ve had a second element in

them.

I We get that the only reason we would not have selected either
(A′

0, a0) or (A′
1, a1) is if there was a third column, A′

2 that had
also had at most two elements left.

I For A′
2 to be selected and leave behind the situation we had

above (going one step back from KA1 = 0) we get that all
three columns must’ve shared an element that was selected in
column A′

2, and we shall call this element e2



The Proof

I If we now look at the pick that lead to KA0 = KA1 = 1 then
the columns A′

0 and A′
1 must’ve had a second element in

them.
I We get that the only reason we would not have selected either

(A′
0, a0) or (A′

1, a1) is if there was a third column, A′
2 that had

also had at most two elements left.

I For A′
2 to be selected and leave behind the situation we had

above (going one step back from KA1 = 0) we get that all
three columns must’ve shared an element that was selected in
column A′

2, and we shall call this element e2



The Proof

I If we now look at the pick that lead to KA0 = KA1 = 1 then
the columns A′

0 and A′
1 must’ve had a second element in

them.
I We get that the only reason we would not have selected either

(A′
0, a0) or (A′

1, a1) is if there was a third column, A′
2 that had

also had at most two elements left.
I For A′

2 to be selected and leave behind the situation we had
above (going one step back from KA1 = 0) we get that all
three columns must’ve shared an element that was selected in
column A′

2, and we shall call this element e2



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n

which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times, but we now have a row, E, can be chosen
by n-d+1 columns, thus

WE HAVE A CONTRADICTION!

I This means that the process detailed in this presentation will
always yield a perfect matching



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n

which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times, but we now have a row, E, can be chosen
by n-d+1 columns, thus

WE HAVE A CONTRADICTION!

I This means that the process detailed in this presentation will
always yield a perfect matching



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n

which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times, but we now have a row, E, can be chosen
by n-d+1 columns, thus

WE HAVE A CONTRADICTION!

I This means that the process detailed in this presentation will
always yield a perfect matching



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n

which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times, but we now have a row, E, can be chosen
by n-d+1 columns, thus

WE HAVE A CONTRADICTION!

I This means that the process detailed in this presentation will
always yield a perfect matching



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times,

but we now have a row, E, can be chosen
by n-d+1 columns, thus

WE HAVE A CONTRADICTION!

I This means that the process detailed in this presentation will
always yield a perfect matching



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times, but we now have a row, E, can be chosen
by n-d+1 columns, thus

WE HAVE A CONTRADICTION!
I This means that the process detailed in this presentation will

always yield a perfect matching



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times, but we now have a row, E, can be chosen
by n-d+1 columns, thus WE HAVE A CONTRADICTION!

I This means that the process detailed in this presentation will
always yield a perfect matching



The Proof
I If we continue this process going P picks back from KA1 = 0

we are considering P+1 columns, A0, A1, ...Ap, each of which
has P elements to choose from

I We also get that these P+1 rows must share at least one
element in common so as to lead to the scenario of P-1 picks
away from KA1 = 0

I If we let P=n-d then we arrive at the fact that there are
(n-d)+1 rows that have at least 1 element, E, in common
from which to choose

I However we have only removed d edges from our the base
graph d=n which means that each element is removed d times
across all of the columns, thus each row has an element
appear n-d times, but we now have a row, E, can be chosen
by n-d+1 columns, thus WE HAVE A CONTRADICTION!

I This means that the process detailed in this presentation will
always yield a perfect matching



Applications
Definition: A Latin Square is an n by n array that has each of n
symbols appear exactly once in each row and each column

Example of a 5 by 5 Latin Square:

1 2 3 4 5
2 4 5 1 3
3 5 4 2 1
4 3 1 5 2
5 1 2 3 4

Definition: A Latin Rectangle is a partial Latin Square that has
the first D rows given and the rest blank
Example of a 2 by 4 Latin Rectangle:

1 2 3 4
2 4 5 1



Applications
Definition: A Latin Square is an n by n array that has each of n
symbols appear exactly once in each row and each column
Example of a 5 by 5 Latin Square:

1 2 3 4 5
2 4 5 1 3
3 5 4 2 1
4 3 1 5 2
5 1 2 3 4

Definition: A Latin Rectangle is a partial Latin Square that has
the first D rows given and the rest blank
Example of a 2 by 4 Latin Rectangle:

1 2 3 4
2 4 5 1



Applications
Definition: A Latin Square is an n by n array that has each of n
symbols appear exactly once in each row and each column
Example of a 5 by 5 Latin Square:

1 2 3 4 5
2 4 5 1 3
3 5 4 2 1
4 3 1 5 2
5 1 2 3 4

Definition: A Latin Rectangle is a partial Latin Square that has
the first D rows given and the rest blank

Example of a 2 by 4 Latin Rectangle:

1 2 3 4
2 4 5 1



Applications
Definition: A Latin Square is an n by n array that has each of n
symbols appear exactly once in each row and each column
Example of a 5 by 5 Latin Square:

1 2 3 4 5
2 4 5 1 3
3 5 4 2 1
4 3 1 5 2
5 1 2 3 4

Definition: A Latin Rectangle is a partial Latin Square that has
the first D rows given and the rest blank
Example of a 2 by 4 Latin Rectangle:

1 2 3 4
2 4 5 1



Application

We can complete a Latin Rectangle, by application of the process
used to find perfect matchings, in the follow way:

Bipartite Graph Analogous Features of
Features Latin Squares



Application

We can complete a Latin Rectangle, by application of the process
used to find perfect matchings, in the follow way:

Bipartite Graph Analogous Features of
Features Latin Squares



Application

We can complete a Latin Rectangle, by application of the process
used to find perfect matchings, in the follow way:

Bipartite Graph Analogous Features of
Features Latin Squares

Each vertex in V1 One specific Column



Application

We can complete a Latin Rectangle, by application of the process
used to find perfect matchings, in the follow way:

Bipartite Graph Analogous Features of
Features Latin Squares

Each vertex in V1 One specific Column
Each vertex in V2 One specific symbol



Application

We can complete a Latin Rectangle, by application of the process
used to find perfect matchings, in the follow way:

Bipartite Graph Analogous Features of
Features Latin Squares

Each vertex in V1 One specific Column
Each vertex in V2 One specific symbol

Each perfect matching One specific row



Application

We can complete a Latin Rectangle, by application of the process
used to find perfect matchings, in the follow way:

Bipartite Graph Analogous Features of
Features Latin Squares

Each vertex in V1 One specific Column
Each vertex in V2 One specific symbol

Each perfect matching One specific row
The common degree of all vertices The number of blank rows

As we can create d perfect matchings of a Bipartite Graph, we can
complete the Latin Rectangle



Application

We can complete a Latin Rectangle, by application of the process
used to find perfect matchings, in the follow way:

Bipartite Graph Analogous Features of
Features Latin Squares

Each vertex in V1 One specific Column
Each vertex in V2 One specific symbol

Each perfect matching One specific row
The common degree of all vertices The number of blank rows

As we can create d perfect matchings of a Bipartite Graph, we can
complete the Latin Rectangle



Thank you

Thank You all for listening to this presentation
Questions?


