Finding Perfect Matchings and
 Completing Latin Rectangles

Nicholas Dibble-Kahn
University of California Santa Barbara

April 3, 2014

Outline

- Definitions

Outline

- Definitions
- The Problem

Outline

- Definitions
- The Problem
- The Set up

Outline

- Definitions
- The Problem
- The Set up
- The Process

Outline

- Definitions
- The Problem
- The Set up
- The Process
- The Proof

Outline

- Definitions
- The Problem
- The Set up
- The Process
- The Proof
- Latin Rectangles

Graph Terminology

- A Graph is a collection of vertices, and edges between them

Graph Terminology

- A Graph is a collection of vertices, and edges between them
- Edges are defined as the unique connection between two different vertices

Graph Terminology

- A Graph is a collection of vertices, and edges between them
- Edges are defined as the unique connection between two different vertices
- The degree of a vertex in a graph is the number of edges that vertex is connected to

Bipartite Graph

Definition: A Bipartite Graph is a graph such that every vertex can be put into one of two groups, V_{1} and V_{2}, with the property that all edges connect vertices in V_{1} to vertices in V_{2} (no edges go between vertices in the same group)

Bipartite Graph

Definition: A Bipartite Graph is a graph such that every vertex can be put into one of two groups, V_{1} and V_{2}, with the property that all edges connect vertices in V_{1} to vertices in V_{2} (no edges go between vertices in the same group)

Example:

Perfect Matching

Definition: A Perfect Matching is a bipartite graph such that there is exactly one edge connected to each vertex

Perfect Matching

Definition: A Perfect Matching is a bipartite graph such that there is exactly one edge connected to each vertex

Example:

The Problem

Problem: We are given a Bipartite Graph, G, with n vertices of degree d in sets V_{1} and V_{2}

We are asked:

The Problem

Problem: We are given a Bipartite Graph, G, with n vertices of degree d in sets V_{1} and V_{2}

We are asked:

- Can we find d Perfect Matchings of G?

The Problem

Problem: We are given a Bipartite Graph, G, with n vertices of degree d in sets V_{1} and V_{2}

We are asked:

- Can we find d Perfect Matchings of G?
- How can we find these Perfect Matchings?

The Problem

- Given: G is is composed of two sets of vertices: V_{1} and V_{2} that each have n elements

The Problem

- Given: G is is composed of two sets of vertices: V_{1} and V_{2} that each have n elements
- We shall label the vertices in V_{1} the numbers $1^{\prime}, 2^{\prime}, \ldots,(n-1)^{\prime}$, n'

The Problem

- Given: G is is composed of two sets of vertices: V_{1} and V_{2} that each have n elements
- We shall label the vertices in V_{1} the numbers $1^{\prime}, 2^{\prime}, \ldots,(n-1)^{\prime}$, n'
- And label the vertices in V_{2} the numbers $1,2, \ldots,(n-1), n$

The Problem

This may seem like a trivial task but let us consider a simple case:

The Problem

This may seem like a trivial task but let us consider a simple case:

The Problem

If we randomly pick edges we could get the following:

The Problem

If we randomly pick edges we could get the following:

- This is notably not a perfect matching, and we cannot easily make it one because there does not exist an edge in our initial graph from 2' to 1

The Set Up

Let us consider the case when $\mathrm{d}=\mathrm{n}$; there is an edge from every vertex in V_{1} to every vertex in V_{2}, and we can model this as a table:

The Set Up

Let us consider the case when $\mathrm{d}=\mathrm{n}$; there is an edge from every vertex in V_{1} to every vertex in V_{2}, and we can model this as a table:
Example: let $\mathrm{d}=\mathrm{n}=4$

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4

The Set Up

Let us consider the case when $\mathrm{d}=\mathrm{n}$; there is an edge from every vertex in V_{1} to every vertex in V_{2}, and we can model this as a table:
Example: let $\mathrm{d}=\mathrm{n}=4$

- Each column is headed by a vertex in V_{1}

The Set Up

Let us consider the case when $\mathrm{d}=\mathrm{n}$; there is an edge from every vertex in V_{1} to every vertex in V_{2}, and we can model this as a table:
Example: let $\mathrm{d}=\mathrm{n}=4$

- Each column is headed by a vertex in V_{1}
- Each other number in the column is a vertex in V_{2} such that there is an edge between the head of a column and each element in its column

The Set Up

If instead of having our table represent $\mathrm{d}=\mathrm{n}$ we wanted some other d less than n, we can do this by simply crossing off edges that are not present

The Set Up

If instead of having our table represent $\mathrm{d}=\mathrm{n}$ we wanted some other d less than n, we can do this by simply crossing off edges that are not present
Example: $\mathrm{n}=4, \mathrm{~d}=2$

The Set Up

If instead of having our table represent $\mathrm{d}=\mathrm{n}$ we wanted some other d less than n, we can do this by simply crossing off edges that are not present
Example: $\mathrm{n}=4, \mathrm{~d}=2$

For edges that we removed from the $d=n$ graph, we put an X in the array to indicate that there is not an edge

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1 ,

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1 , from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1 , from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- When we pick a vertex of V_{2} to draw an edge to a specific vertex in V_{1},

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1 , from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- When we pick a vertex of V_{2} to draw an edge to a specific vertex in V_{1}, we cannot not pick another edge that shares either of these two vertices

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1 , from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- When we pick a vertex of V_{2} to draw an edge to a specific vertex in V_{1}, we cannot not pick another edge that shares either of these two vertices
- On the table this corresponds to picking an element, E , in a column, C^{\prime}, and then not picking another element E in a different column

The Process

- We can take a bipartite graph with d edges and construct a table for it such that each column has d elements that are not-X's
- From here we shall start picking elements, in a specific fashion, to find a single perfect matching
- Once we find a perfect matching we can delete it from our graph to reduce d by 1 , from which we can repeat the process d times until the entire initial graph becomes partitioned into d perfect matchings
- When we pick a vertex of V_{2} to draw an edge to a specific vertex in V_{1}, we cannot not pick another edge that shares either of these two vertices
- On the table this corresponds to picking an element, E , in a column, C^{\prime}, and then not picking another element E in a different column and likewise not pick another element from column C'

The Process

- The last, and most important step, is determining which points to pick

The Process

- The last, and most important step, is determining which points to pick
- To answer this we shall define a K_{c} to be the number of elements in a column C^{\prime} that are not X,

The Process

- The last, and most important step, is determining which points to pick
- To answer this we shall define a K_{c} to be the number of elements in a column C' that are not X ,
- If we consider all of the columns, then we will pick any element from the column with the smallest value for K_{c}

The Process

- The last, and most important step, is determining which points to pick
- To answer this we shall define a K_{c} to be the number of elements in a column C' that are not X ,
- If we consider all of the columns, then we will pick any element from the column with the smallest value for K_{c}

To best understand this process, let us find a perfect matching of the previous example:

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	1	1
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	3
4	4	X_{4}	X_{4}

The Process

To best understand this process, let us find a perfect matching of the previous example:

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	1	1
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	3
4	4	X_{4}	X_{4}

As $K_{c}=2$ for all the columns we can pick a random element from any of the columns, let us then arbitrarily pick column 2' element 3

The Process

Thus having picked $\left(2^{\prime}, 3\right)$ we shall make all other elements in column 2' and row 3 X :

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	1	1
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	3
4	4	X_{4}	X_{4}

The Process

Thus having picked $\left(2^{\prime}, 3\right)$ we shall make all other elements in column 2' and row 3 X :

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	1	1
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	X_{3}
4	X_{4}	X_{4}	X_{4}

The Process

There are now three rows left. $K_{1}=K_{3}=2$ while $K_{4}=1$ thus we must pick from column 4 ' the element 1

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	1	1
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	X_{3}
4	X_{4}	X_{4}	X_{4}

The Process

Having picked $\left(4^{\prime}, 1\right)$ we must now X out all other elements in Column 4' and row 1 :

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}		1
2	1		
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	X_{3}
4	X_{4}	X_{4}	X_{4}

The Process

Having picked $\left(4^{\prime}, 1\right)$ we must now X out all other elements in Column 4' and row 1 :

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}		X_{1}
2	1		
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	X_{3}
4	X_{4}	X_{4}	X_{4}

The Process

We now have that $K_{1}=2$ and $K_{3}=1$ so we must pick from column 3' element 2 :

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	X_{1}	1
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	X_{3}
4	X_{4}	X_{4}	X_{4}

The Process

Putting X 's in the appropriate places yields:

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	X_{1}	1
2	X_{2}	2	X_{2}
X_{3}	3	X_{3}	X_{3}
4	X_{4}	X_{4}	X_{4}

1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}
X_{1}	X_{1}	X_{1}	1
X_{2}	X_{2}	2	X_{2}
X_{3}	3	X_{3}	X_{3}
4	X_{4}	X_{4}	X_{4}

Leaving only element $\left(1^{\prime}, 4\right)$ to pick. The edges defined by $\left(1^{\prime}, 4\right)$, $\left(2^{\prime}, 3\right),\left(3^{\prime}, 2\right)$, and $\left(4^{\prime}, 1\right)$ thus form a perfect matching:

The Proof

Claim: That the process detailed above will give a perfect matching

The Proof

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

The Proof

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges

The Proof

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some $K_{A_{0}}$ were to become 0 (such that we did not yet pick an element from column A_{0}^{\prime})

The Proof

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some $K_{A_{0}}$ were to become 0 (such that we did not yet pick an element from column A_{0}^{\prime})
- If we look at the step in the process before $K_{A_{0}}=0$ then column A_{0} must have had an element, e_{0}

The Proof

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some $K_{A_{0}}$ were to become 0 (such that we did not yet pick an element from column A_{0}^{\prime})
- If we look at the step in the process before $K_{A_{0}}=0$ then column A_{0} must have had an element, e_{0}
- Because we must pick from the column with the fewest elements to pick from,

The Proof

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some $K_{A_{0}}$ were to become 0 (such that we did not yet pick an element from column A_{0}^{\prime})
- If we look at the step in the process before $K_{A_{0}}=0$ then column A_{0} must have had an element, e_{0}
- Because we must pick from the column with the fewest elements to pick from, the only reason we would not have select $\left(A_{0}^{\prime}, e_{0}\right)$ would be if there were another column, A_{1}^{\prime}, that also only had one element, e_{1}, left to pick

The Proof

Claim: That the process detailed above will give a perfect matching We will prove this by contradiction

- This process will always give some matching, but if this matching wasn't perfect, there would be some vertices without edges
- The only way this would happen in the process is if some $K_{A_{0}}$ were to become 0 (such that we did not yet pick an element from column A_{0}^{\prime})
- If we look at the step in the process before $K_{A_{0}}=0$ then column A_{0} must have had an element, e_{0}
- Because we must pick from the column with the fewest elements to pick from, the only reason we would not have select $\left(A_{0}^{\prime}, e_{0}\right)$ would be if there were another column, A_{1}^{\prime}, that also only had one element, e_{1}, left to pick
- And specifically the only reason (A_{1}^{\prime}, e_{1}) would prevent (A_{0}^{\prime}, e_{0}) from getting chosen is if $e_{1}=e_{0}$ so as to then change e_{0} to an X

The Proof

- If we now look at the pick that lead to $K_{A_{0}}=K_{A_{1}}=1$ then the columns A_{0}^{\prime} and A_{1}^{\prime} must've had a second element in them.

The Proof

- If we now look at the pick that lead to $K_{A_{0}}=K_{A_{1}}=1$ then the columns A_{0}^{\prime} and A_{1}^{\prime} must've had a second element in them.
- We get that the only reason we would not have selected either $\left(A_{0}^{\prime}, a_{0}\right)$ or $\left(A_{1}^{\prime}, a_{1}\right)$ is if there was a third column, A_{2}^{\prime} that had also had at most two elements left.

The Proof

- If we now look at the pick that lead to $K_{A_{0}}=K_{A_{1}}=1$ then the columns A_{0}^{\prime} and A_{1}^{\prime} must've had a second element in them.
- We get that the only reason we would not have selected either $\left(A_{0}^{\prime}, a_{0}\right)$ or $\left(A_{1}^{\prime}, a_{1}\right)$ is if there was a third column, A_{2}^{\prime} that had also had at most two elements left.
- For A_{2}^{\prime} to be selected and leave behind the situation we had above (going one step back from $K_{A_{1}}=0$) we get that all three columns must've shared an element that was selected in column A_{2}^{\prime}, and we shall call this element e_{2}

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from
- We also get that these $\mathrm{P}+1$ rows must share at least one element in common so as to lead to the scenario of $\mathrm{P}-1$ picks away from $K_{A_{1}}=0$

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from
- We also get that these $\mathrm{P}+1$ rows must share at least one element in common so as to lead to the scenario of $\mathrm{P}-1$ picks away from $K_{A_{1}}=0$
- If we let $\mathrm{P}=\mathrm{n}-\mathrm{d}$ then we arrive at the fact that there are $(n-d)+1$ rows that have at least 1 element, E, in common from which to choose

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from
- We also get that these $\mathrm{P}+1$ rows must share at least one element in common so as to lead to the scenario of $\mathrm{P}-1$ picks away from $K_{A_{1}}=0$
- If we let $\mathrm{P}=\mathrm{n}$ - d then we arrive at the fact that there are $(n-d)+1$ rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph $\mathrm{d}=\mathrm{n}$

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from
- We also get that these $\mathrm{P}+1$ rows must share at least one element in common so as to lead to the scenario of $\mathrm{P}-1$ picks away from $K_{A_{1}}=0$
- If we let $\mathrm{P}=\mathrm{n}$ - d then we arrive at the fact that there are $(n-d)+1$ rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph $\mathrm{d}=\mathrm{n}$ which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times,

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from
- We also get that these $\mathrm{P}+1$ rows must share at least one element in common so as to lead to the scenario of $\mathrm{P}-1$ picks away from $K_{A_{1}}=0$
- If we let $\mathrm{P}=\mathrm{n}-\mathrm{d}$ then we arrive at the fact that there are $(n-d)+1$ rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph $\mathrm{d}=\mathrm{n}$ which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times, but we now have a row, E, can be chosen by $\mathrm{n}-\mathrm{d}+1$ columns, thus

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from
- We also get that these $\mathrm{P}+1$ rows must share at least one element in common so as to lead to the scenario of $\mathrm{P}-1$ picks away from $K_{A_{1}}=0$
- If we let $\mathrm{P}=\mathrm{n}-\mathrm{d}$ then we arrive at the fact that there are $(n-d)+1$ rows that have at least 1 element, E, in common from which to choose
- However we have only removed d edges from our the base graph $\mathrm{d}=\mathrm{n}$ which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times, but we now have a row, E, can be chosen by $\mathrm{n}-\mathrm{d}+1$ columns, thus WE HAVE A CONTRADICTION!

The Proof

- If we continue this process going P picks back from $K_{A_{1}}=0$ we are considering $\mathrm{P}+1$ columns, $A_{0}, A_{1}, \ldots A_{p}$, each of which has P elements to choose from
- We also get that these $\mathrm{P}+1$ rows must share at least one element in common so as to lead to the scenario of $\mathrm{P}-1$ picks away from $K_{A_{1}}=0$
- If we let $\mathrm{P}=\mathrm{n}-\mathrm{d}$ then we arrive at the fact that there are $(\mathrm{n}-\mathrm{d})+1$ rows that have at least 1 element, E , in common from which to choose
- However we have only removed d edges from our the base graph $\mathrm{d}=\mathrm{n}$ which means that each element is removed d times across all of the columns, thus each row has an element appear n-d times, but we now have a row, E, can be chosen by $n-d+1$ columns, thus WE HAVE A CONTRADICTION!
- This means that the process detailed in this presentation will always yield a perfect matching

Applications

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column

Applications

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column Example of a 5 by 5 Latin Square:

1	2	3	4	5
2	4	5	1	3
3	5	4	2	1
4	3	1	5	2
5	1	2	3	4

Applications

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column Example of a 5 by 5 Latin Square:

1	2	3	4	5
2	4	5	1	3
3	5	4	2	1
4	3	1	5	2
5	1	2	3	4

Definition: A Latin Rectangle is a partial Latin Square that has the first D rows given and the rest blank

Applications

Definition: A Latin Square is an n by n array that has each of n symbols appear exactly once in each row and each column Example of a 5 by 5 Latin Square:

1	2	3	4	5
2	4	5	1	3
3	5	4	2	1
4	3	1	5	2
5	1	2	3	4

Definition: A Latin Rectangle is a partial Latin Square that has the first D rows given and the rest blank
Example of a 2 by 4 Latin Rectangle:

1	2	3	4
2	4	5	1

Application

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Application

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph	Analogous Features of
Features	Latin Squares

Application

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph Features	Analogous Features of Latin Squares
Each vertex in V_{1}	One specific Column

Application

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph Features	Analogous Features of Latin Squares
Each vertex in V_{1}	One specific Column
Each vertex in V_{2}	One specific symbol

Application

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph Features	Analogous Features of Latin Squares
Each vertex in V_{1}	One specific Column
Each vertex in V_{2}	One specific symbol
Each perfect matching	One specific row

Application

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph Features	Analogous Features of Latin Squares
Each vertex in V_{1}	One specific Column
Each vertex in V_{2}	One specific symbol
Each perfect matching	One specific row
The common degree of all vertices	The number of blank rows

Application

We can complete a Latin Rectangle, by application of the process used to find perfect matchings, in the follow way:

Bipartite Graph Features	Analogous Features of Latin Squares
Each vertex in V_{1}	One specific Column
Each vertex in V_{2}	One specific symbol
Each perfect matching	One specific row
The common degree of all vertices	The number of blank rows

As we can create d perfect matchings of a Bipartite Graph, we can complete the Latin Rectangle

Thank you

Thank You all for listening to this presentation Questions?

