Curvature

Nicholas Dibble-Kahn

University of California, Santa Barbara
May 19, 2014

When drawing two circles of different radii it certainly seems like the smaller one is curving more rapidly than the the larger one.

So we want to define some quantity for curvature that has the following properties:

So we want to define some quantity for curvature that has the following properties:
A line does not curve and so its curvature should be 0 .

So we want to define some quantity for curvature that has the following properties:
A line does not curve and so its curvature should be 0 .
A circle should have constant curvature as it has rather perfect symmetry.

So we want to define some quantity for curvature that has the following properties:
A line does not curve and so its curvature should be 0 .
A circle should have constant curvature as it has rather perfect symmetry.
So how can we incorporate these ideas?

Unit tangent:

If we are given some curve, then we define the unit tangent at a point of that curve to be the vector with unit length (length 1), and in the direction of the tangent line.

Unit tangent:

If we are given some curve, then we define the unit tangent at a point of that curve to be the vector with unit length (length 1), and in the direction of the tangent line.

Tangent.png

Curvature:
Defined to be the magnitude of the derivative of the unit tangent, T, with respect to arc length, s; written formally as $K=\left\|\frac{d T}{d s}\right\|$

Curvature:

Defined to be the magnitude of the derivative of the unit tangent, T , with respect to arc length, s ; written formally as $K=\left\|\frac{d T}{d s}\right\|$

T is a vector having both magnitude ans direction. As the magnitude of T isn't changing we are really just measuring the change the direction, or angle with respect to the horizontal T is making, which we shall call θ, so alternatively this we can say $K=\left\|\frac{d \theta}{d s}\right\|$

If we are working with a standard defined function in the $x-y$ plane, $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then we can use the chain rule to write $K=\left\|\frac{d \theta}{d s}\right\|=\left\|\left(\frac{d \theta}{d x}\right)\left(\frac{d x}{d s}\right)\right\|$

If we are working with a standard defined function in the $x-y$ plane, $y=f(x)$, then we can use the chain rule to write $K=\left\|\frac{d \theta}{d s}\right\|=\left\|\left(\frac{d \theta}{d x}\right)\left(\frac{d x}{d s}\right)\right\|$

As we know that $\tan (\theta)=\frac{d y}{d x}$ and that $\frac{d x}{d s}=\frac{1}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}$ we can thus use some messy but basic calculus to reduce this all to

$$
K=\left\|\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}\right\|
$$

$$
K=\left\|\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}\right\|
$$

We can easily see from here that the since the second derivative of any line is 0 it has no curvature just as we want!!

$$
K=\left\|\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}\right\|
$$

We can easily see from here that the since the second derivative of any line is 0 it has no curvature just as we want!! Now an example:if $y=x^{2}$ then $K=\left\|\frac{2}{\left[1+(2 x)^{2}\right]^{3 / 2}}\right\|$ this is rather messy

$$
K=\left\|\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}\right\|
$$

We can easily see from here that the since the second derivative of any line is 0 it has no curvature just as we want!! Now an example:if $y=x^{2}$ then $K=\left\|\frac{2}{\left[1+(2 x)^{2}\right]^{3 / 2}}\right\|$ this is rather messy
But one thing we can see is that at $x=0 \mathrm{~K}=2$, and recalling from the beginning that radius of curvature is the inverse of curvature, we get that the bottom a standard parabola behaves momentarily like a circle of radius $1 / 2$!

We can expand this idea into further dimensions! Gaussian curvature is one such way to do this.

We can expand this idea into further dimensions!
Gaussian curvature is one such way to do this.
What it does it it takes a point on a curved surface and it draws all of the normal planes to the surface at that point.

We can expand this idea into further dimensions!
Gaussian curvature is one such way to do this.
What it does it it takes a point on a curved surface and it draws all of the normal planes to the surface at that point.

The intersection of the normal plane and our surface is a two dimensional curve, from which in the manner described in the rest of this presentation we can find a value for the curvature.

We can expand this idea into further dimensions!
Gaussian curvature is one such way to do this.
What it does it it takes a point on a curved surface and it draws all of the normal planes to the surface at that point.

The intersection of the normal plane and our surface is a two dimensional curve, from which in the manner described in the rest of this presentation we can find a value for the curvature.

Different normal planes will have different values for the curvature at the specific point

Gausian Curvature at a point on a surface is defined to be the product of the maximum and minimum values of curvature across all normal planes, which we call the principle curvatures

Gausian Curvature at a point on a surface is defined to be the product of the maximum and minimum values of curvature across all normal planes, which we call the principle curvatures

It should be noted that previously our curvature definition involved taking the magnitude of an expression, but if we don't do this we get signed curvature, which is the curvature used in Gaussian Curvature.

Gausian Curvature at a point on a surface is defined to be the product of the maximum and minimum values of curvature across all normal planes, which we call the principle curvatures

It should be noted that previously our curvature definition involved taking the magnitude of an expression, but if we don't do this we get signed curvature, which is the curvature used in Gaussian Curvature.
When we use this definition we get that the following:

> Sphere (positive Gaussian curvature)

Hyperboloid (negative Gaussian curvature)

It so turns out that a sphere or radius R has constant curvature of $1 / R^{2}$

It so turns out that a sphere or radius R has constant curvature of $1 / R^{2}$
From this came the definition of a pseudo-sphere which is defined to have constant curvature of $-1 / R^{2}$

It so turns out that a sphere or radius R has constant curvature of $1 / R^{2}$
From this came the definition of a pseudo-sphere which is defined to have constant curvature of $-1 / R^{2}$ While this is conceptually harder to understand, others have figure out that it takes the form of the following:

Thank you! Questions?

Sources: Wikipedia, Wolfram Alpha, and Google images (I looked at other places but these had the nicest things to read and understand to for a beginner)

