
Math/CCS 103 Professor: Padraic Bartlett

Minilecture 7: 3SAT and Latin Squares

Week 3 UCSB 2014

In today’s talk we’re going to (mostly) prove the following claim:

Theorem. 3SAT is reducible to the task of completing an arbitrary partial Latin square.
In other words, if we have an algorithm that completes arbitrary partial Latin squares, we
can turn this algorithm into a method to satisfy boolean formulas in 3SAT.

We prove this by starting with the following equivalence:

Theorem. Completing a n×n partial Latin square is equivalent to the task of triangulating
a tripartite graph G = V1, V2, V3 whose tripartite complement is triangulatable and whose
parts V1, V2, V3 are all size n.

That’s. . . a lot of terms we haven’t defined yet in class. Let’s break those down here:

Definition. A graph is called tripartite if there is some way to group its vertices into
three sets V1, V2, V3 such that no edge in our graph has both of its endpoints in the same
Vi.

Here are some examples:

(not tripartite) (tripartite)

Definition. Given a tripartite graph G with tripartition V1, V2, V3, the tripartite com-
plement G of our original graph is the tripartite graph formed by connecting two vertices
v ∈ Vi, w ∈ Vj whenever i 6= j and the edge {v, w} did not exist in the original graph G.

We again give an example:

(original graph) (complement graph) (original superimposed on complement)

1



Notice that in the picture above, the edges of the complement graph were precisely the
edges between distinct parts that did not exist in the original graph.

Definition. A triangulation of a graph G is a way to divide G’s edges up into disjoint
subsets, each of which forms a triangle.

We draw two examples below:

(not triangulatable) (triangulatable)

1

2

3

1 2 3

1

2

3

3

1

2

1

1

3

1

2

1

2

2

2 2

3

3

3

3

1

=

With these definitions, it’s actually pretty easy to prove our claim:

Proof. First, notice that we can turn any n × n partial Latin square into a triangulated
tripartite graph G with parts V1, V2, V3 corresponding to the rows, columns and symbols of
our Latin square: we do this by associating each filled cell (i, j) containing symbol k to the
triangle ∆ricjsk in our tripartite graph.

1
2 3

rows

columns symbols

Now, filling in cells in our partial Latin square just corresponds to adding new triangles to
our tripartite graph:

1
2 3

rows

columns symbols2

2



In particular, filling in all of the cells of our partial Latin square corresponds to taking all
of the edges not yet used in G, and grouping them into triangles:

1
2 3

rows

columns symbols2

2 3
1

13

Therefore, these problems are equivalent! We have created a way to turn instances of one
of these tasks into instances of the other task.

Consequently, if we want to show that 3SAT is reducible to the task of completing an
arbitrary partial Latin square, we can just reduce 3SAT to the problem of triangulating
these special kinds of graphs! To make our lives easier, we’re going to prove something
slightly weaker here: we’re going to reduce 3SAT to the more general task of triangulating a
tripartite graph. In other words, we will show that if we have an algorithm that triangulates
tripartite graphs, we can use that algorithm to satisfy boolean formulas. (In fact, the
tripartite graphs we work with here are these special kinds of graphs, but it’s tedious to
show that, so I’m skipping it. Try to prove it if you’re interested, though!)

Theorem. 3SAT is reducible to the task of triangulating an arbitrary tripartite graph.

Proof. We first take a quick detour into topology. Specifically, suppose we take a square
of some flexible material, like rubber or cloth. Imagine that we take this square, and glue
two opposite sides together: this would give us a cylindrical tube. If we were to then glue
together the two opposing circles, this would give us a torus, or “doughnut,” as drawn
below:

Gluing! We can glue graphs together, as defined here:

Definition. Take two graphs G1, G2. Suppose that they both contain a copy of the same
subgraph H. We can glue G1 to G2 along H by taking our two graphs, and declaring that
the copy of H that they both contain is the “same:” i.e. we identify the copy of H in the
first graph with the copy of H in the second graph, so that these two graphs are now joined
along H!

3



We illustrate this with an example below, where we glue two different graphs G1, G2

along their common subgraph H = :

+ =

We combine these two ideas together with the following graph, which we call H3,n:

a21 a22 a23 a21

a31 a32 a33 a31

a41 a42 a43 a41

an1 an2 an3 an1

a11 a12 a13 a11

a11 a12 a13 a11

a21 a22

a23

a11 a13

a12

a43 a41

a42

a33 a32

a31

a52 a51

a53

an3

an1

a11 a13

a12

a51 a52 a53 a51

a11

a12

a13
a21

a22
a23

a31

a32a33

a41
a42

a43
a51

a52

a53

an1
an3

an2

To form H3,n, first create the lattice of triangles at the left, which we get by gluing n

copies of the graph to each other. Now, take this lattice and perform the same
gluing operation we did to create a torus: i.e. glue the top edge to the bottom edge, and
the left edge to the right edge. In the picture above, we indicated how this is done with
our vertex labelings: i.e. when we have two different vertices labeled a12, that means that
we are considering those vertices to be the same! If we do this, we get the “triangulated
torus” at the right by actually sticking this left edge to the right edge, and the top edge to
the bottom edge.

In practice, we will usually draw H3,n by using the picture at the left, because it’s easier
to work with the “unrolled” torus and keep track of the fact that we’re gluing two edges
together, than to have to actually work on a torus all of the time.

The first reason we care about these graphs is the following property: for any H3,n with
n > 3, there are only two triangulations on it! We illustrate this in the following picture:

4



(a true triangulation) (a false triangulation)

Call a triangulation of the first kind, using ∆ triangles, a “true” triangulation, and a
triangulation of the second kind, using ∇ triangles, a “false” triangulation.

The second reason we care about these graphs is because they do “interesting” things
when glued together in certain ways. Specifically, suppose that we take two H3,n graphs
and perform the following “gluing” operation:

• In each of our two H3,n graphs, find a subgraph in the form the configuration .
In particular, make sure that this subgraph has the ∆ orientation, with its base at
the bottom, in both graphs.

• Glue these two H3,n’s together along these six vertices.

What is now true about triangulations of this resulting graph? Well: suppose we have two
such graphs glued together.

Let’s try to start triangulating this graph, starting from the left. As before, the leftmost
part has only two triangulations: if we place one ∆ triangle, we are forced to only use ∆
triangles throughout this entire graph, and similarly for using ∇ triangles. But what does
this mean about our second graph?

Well: if we used only ∆ triangles, we are in the situation

5



In other words, we’ve already started using ∆ triangles on the right! This forces us to
continue using these ∆ triangles through the entire right graph:

Therefore, we have shown that if we ever start using a ∆ triangulation on one of our
graphs, we are forced to continue this triangulation through to the other graph. So: what
happens if we start by using ∇ triangles? Well: initially, we get

Now: notice that in the right graph, we’ve started by using all of the purple edges and
no other edges. In other words, on the right, it is as if we have already placed three ∆

6



triangles to use up all of the purple edges! Essentially, this means we’ve already started to
use ∆ triangles on the right, and have no choice but to continue:

So: if we start with ∇ triangles on one side, we must use ∆ triangles on the other side!
Essentially, we have proven the following result:

Lemma. Suppose that we have two H3,n’s connected by gluing a in one graph to a

in the other, so that both patches have their base at the bottom. Then either both of
these graphs have true triangulations, or exactly one has a true triangulation and the other
has a false triangulation.

For shorthand, we call any subgraph where the base is at the bottom an A-patch,

and any subgraph of the form where the base is on the top a B-patch.
By using the same logic, it is not hard to get the following corollary to our result:

Lemma. Suppose that we have two H3,n’s connected by gluing a A-patch in one graph to
a B-patch in the other graph.

Then either both of these graphs have false triangulations, or exactly one has a true
triangulation and the other has a false triangulation.

These graphs do interesting things when glued together in other ways:

Lemma. Suppose that we have two H3,n’s connected by gluing an A-patch in one to an
A-patch in the other. Suppose that after we glue these two graphs together we remove the
middle triangle from our A-patch from both graphs. Then exactly one of our graphs has a
false triangulation and the other has a true triangulation.

Proof. This is not too hard to see. Again, take any such pair of graphs, and glue them
together as directed:

7



Now, as before, try to triangulate the left-hand-side. Because the middle of our purple
triangle is missing, we have in some sense “already picked” the ∇ triangulation, and are
forced to use it throughout the entire left-hand side:

As before, this forces us to use the ∆ triangles on the right-hand-side.

In other words, exactly one of these graphs has a false triangulation, and the other has a
true triangulation, as claimed!

8



Again, by using the same logic, it is not hard to get the following result:

Lemma. Suppose that we have several H3,n’s connected by finding an A-patch from each
graph and gluing them all together along that A-patch. Suppose further that after we glue
these two graphs together, we remove the middle triangle from our A-patch from all of these
graphs. Then exactly one of our graphs has a false triangulation and all of the others have
true triangulations.

Ok. So. How does all of this connect to Boolean formulas? Well: suppose we have any
of the Boolean formulas you get from 3SAT: i.e. formulas of the form

(l1,1 ∨ l1,2 ∨ l13) ∧ (l2,1 ∨ l2,2 ∨ l2,3) ∧ . . . ∧ (ln,1 ∨ ln,2 ∨ ln,3),

where all of the li,j ’s are expressions of the form x or ¬x, for some Boolean variable x. For
example,

(x ∨ y ∨ z) ∧ (¬x ∨ x ∨ x) ∧ (a ∨ a ∨ a)

is a formula we could have, with l1,1 = x, l1,2 = y, l1,3 = z, l2,1 = ¬x, l2,2 = x, . . . We call
these li,j ’s literals, and their triples (l1,1 ∨ l1,2 ∨ l13) clauses, for shorthand.

Let’s turn this formula into a graph! We do this as follows:

1. For each variable xk that shows up in our formula, create a H3,n and call it Cxk
.

2. As well, for each literal li,j in our formula, create a H3,n, and call it Ci,j .

3. Whenever a literal li,j consists of a variable xk, find an A-patch in Cxk
and Ci,j , and

glue these two graphs together along this A-patch.

4. Whenever a literal li,j consists of the negation of a variable ¬xk, find an A-patch in
Cxk

and a B-patch in Ci,j , and glue these two graphs together along these patches.

5. Finally, for each clause (li,1 ∨ li,2 ∨ li,3), find A-patches in all three of the graphs
Ci,1, Ci,2, Ci,3, glue these graphs together along these A-patches, and delete the central
triangle.

(For the above process, pick the n in our H3,n’s large enough so that we can make all of
these patches not overlap.)

Now: suppose that the above graph has a triangulation! By our lemmas, we know that

1. Each Cxk
has either a true or a false triangulation.

2. If a literal li,j consists of a variable xk, then the graph Ci,j has a true triangulation
whenever Cxk

has a false triangulation, and can be either true or false whenever Cxk

has a true triangulation.

3. If a literal li,j consists of the negation of a variable ¬xk, then the graph Ci,j has a
true triangulation whenever Cxk

has a true triangulation, and can be either true or
false whenever Cxk

has a false triangulation.

4. Exactly one of the graphs Ci,1, Ci,2, Ci,3 has a false triangulation, and the other two
have true triangulations.

9



So: what does this mean? Well: let’s suppose that we’re looking at a clause of the form
(l1,1 ∨ l1,2 ∨ l13) = (x ∨ y ∨ z), for three variables x = l1,1, y = l1,2, z = l1,3.

1. If all of the graphs Cx, Cy, Cz have false triangulations, this forces the three graphs
C1,1, C1,2, C1,3 to all have true triangulations, which breaks our fourth condition (ex-
actly one graph Ci,1, Ci,2, Ci,3 must have a false triangulation.) So this causes a
problem with our triangulation.

2. Otherwise, suppose that one of the graphs Cx, Cy, Cz has a true triangulation. Then
its corresponding C1,i can have whatever triangulation we want: either a false trian-
gulation or a true triangulation! In particular, this means that if at least one of
Cx, Cy, Cz have a true triangulation, we can make sure that exactly one of the the
graphs Ci,1, Ci,2, Ci,3 has a false triangulation, which satisfies all of the conditions we
wanted above.

3. In other words, these graphs have triangulations if and only if the expression (x∨y∨z)
evaluates to true!

This generalizes easily to the situation where we have ¬x’s in our clauses: our graphs have
triangulations if and only if their corresponding clauses can evaluate to true! Therefore, this
triangulation can exist only if our boolean formula is satisfiable. Conversely, if our boolean
formula is satisfiable, we can use its true/false assignments to pick out triangulations, which
will triangulate our whole graph!

This is what we sought to prove in this talk: if we know how to triangulate tripartite
graphs, we know how to satisfy boolean functions! in other words, we have reduced 3SAT
to triangulating tripartite graphs.

10


