Math/CCS 103

Week 1
UCSB 2014

This miniature talk builds off of the game of Sim we mentioned earlier! Consider the following definitions:

1. The complete graph on n vertices, K_{n}, is the simple graph on the vertex set $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ that has every possible edge: in other words, $E\left(K_{n}\right)=\left\{\left\{v_{i}, v_{j}\right\}: i \neq j\right\}$. We draw several of these graphs below:

2. A two-coloring of the edges in a graph, given two colors (say, red and blue,) is a mapping that assigns to each edge in the graph one of these two colors.

Game. Consider the following game, which is the n, k-generalization of Sim:
Board: n vertices drawn on a piece of paper.
Players: Two players, Red and Blue, each with a pen of their respective color.
Play: The players alternate turns, drawing edges between vertices using their colored pens. Edges must be drawn between vertices that have not been connected with an edge yet; i.e. once one player connects two vertices with an edge, no other player can draw an edge that connects those two vertices.

End state: A player loses if there is ever a collection of k vertices connected only by edges of that player's color: i.e. if that player creates a monochromatic K_{k} in their color.

In other words, we are playing on a K_{n}, and each player is trying to avoid making a monochrome K_{k} in their respective color: in Sim, we were playing on a K_{6}, and each player was trying to avoid making a K_{3}.

In this presentation, we will prove the following theorem:

Theorem 1. For any k, there is a n such that games of (n, k)-Sim never end in draws.
In particular, we will prove the following stronger statement:
Theorem 2. For any two integers k, l, there is a n such that any red-blue coloring of K_{n} contains either a red K_{k} or a blue K_{l}.

Proof. Let $R(k, l)$ denote the smallest value of n such that if K_{n} 's edges are all colored either red or blue, then K_{n} necessarily contains an all-red K_{k} or an all-blue K_{l}. We seek to show that R is well-defined, and always exists.

We first note some simple starting cases. We have $R(n, 1)=R(1, n)=1$, as any twocoloring of K_{n} 's edges has a K_{1} in which all of the edges are whatever color we want (because there are no edges in K_{1}, as it is the graph with one vertex and no edges.)

As well, we have $R(n, 2)=R(2, n)=n$, because any red-blue two-coloring of K_{n} 's edges either

- paints all of the edges the same color (which makes a monochrome K_{n} of one of our colors), or
- paints at least one edge red and another blue (which makes monochrome K_{2} 's of both colors.)

Furthermore, we claim that we have the following recursive bound on the growth of $R(r, s)$:

$$
R(r, s) \leq R(r, s-1)+R(r-1, s)
$$

To prove this, we proceed by induction on the sum $r+s$. We've already proven the base cases via the two examples above: so we take any pair r, s, and can assume that our bound holds for any x, y with $x+y<r+s$.

Take a complete graph K on $(R(r, s-1)+R(r-1, s))$ many vertices, and color its edges red and blue. We seek to show that there's either a monochrome red K_{r} or monochrome blue K_{s} in K_{n}.

To see this, we mimic the proof structure that worked for us in our game. Pick any $v \in K$, and partition the rest of K 's vertices into two sets:

- B^{\prime}, which contains all of the vertices in K connected to v by a blue edge, and
- R^{\prime}, which contains all of the vertices in K connected to v by a red edge.

Let B and R be the subgraphs ${ }^{1}$ of K induced by these vertices, respectively.
Because K has

$$
R(r, s-1)+R(r-1, s)=|V(B)|+|V(R)|+1
$$

many vertices, either $|V(B)| \geq R(r, s-1)$ or $|V(R)| \geq R(r-1, s)$.
Suppose that we have $|V(B)| \geq R(r, s-1)$. Because $r+s-1<r+s$, we can apply our inductive hypothesis, which tells us that we have either

[^0]1. a red K_{r} inside of B, or
2. a blue K_{s-1} inside of B, in which case (by combining this blue K_{s-1} with v and its edges to B) we have a blue K_{s} inside of our entire K_{n}.

These are the two cases we were looking for; so, in the situation where $|V(B)| \geq R(r, s-1)$, we've proven our claim!

Similarly, if we have $|R| \geq R(r-1, s)$, we can use induction to tell us that there's either

1. a blue K_{s} inside of R, or
2. a red K_{r-1} inside of R, in which case (by combining this red K_{r-1} with v and its edges to R) we have a red K_{r} inside of our entire K_{n},
and we're also done.

In the language of the proof above, our Sim presentation can be thought of as proving that $R(3,3)=6$.

[^0]: ${ }^{1}$ Given a graph $G=(V, E)$ and a subset of vertices $X \subset V$ from G, the subgraph induced by X is the graph with vertex set X, where two vertices are connected in X whenever they are connected in G.

