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What is the Bertrand Paradox?
Let’s find out.

Problem
We are given a circle with an equilateral triangle inscribed in it,
and asked to draw a chord through the circle randomly.

I What is the probability that a random chord drawn through
the circle is longer than the length of a side of the triangle?
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To answer this question, Bertrand proposed not one but three
different methods of randomly drawing in chords.

I These methods are as follows:
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Method #1

First Method Consider a single vertex of the triangle.

I Allow chords to be drawn randomly on circle

I After a chord is drawn randomly on the circle, imagine we
rotate the chord so that one of the endpoints of the chord is
on the chosen vertex of the triangle.

I What is the probability that any random chord has a length
greater than that of one side of the equilateral triangle?
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As you can see, the red lines were the ones that were longer than
the length of a side of the equilateral triangle, and the blue ones
were not.

The probability of a random chord drawn being red is as follows:

I The angle at the vertex we have chosen is π/3.

I Because angles from this vertex can be anywhere from 0 to π
radians, the probability that a line is in the π/3 we want is
(π/3)/π.

I 1/3

This is a completley correct answer.
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I Let’s just make sure that this answer is acceptable.

I To do this, let’s double check it with another method that
Bertrand proposed.
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Second Method Consider a diameter of the circle drawn such that
it bisects one side of the equilateral triangle.





Method #2

Second Method Consider a diameter of the circle drawn such that
it bisects one side of the equilateral triangle.

I Allow chords to be drawn randomly on the circle, again.

I For each chord drawn, rotate it within the circle, this time
such that it is perpendicular to the diameter drawn.

I Notice that the chords will be longer than one side of the
equilateral triangle if they are between the horizontal side of
the triangle and the middle of the circle.

I This is also true for the upper half of the circle, symmetrically,
if we did not consider all rotations to go to the bottom.
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I What is the probability that a chord randomly drawn is longer
than the side of the equilateral triangle inscribed now?

I Well, lets look at the distribution of lines in this setup.

I The distance between the horizontal base of a triangle and the
point where the diameter intersects the circumference of the
circle is half that of the radius.

I Thus, the probability that a chord is longer than the base of
the triangle is this proportion of red lines to total lines, which
is 1/2

I 1/2

This is also a completely correct solution to the problem.
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I Wait, how can this be?

I This is different from our first solution.

I The third method that Bertrand proposed must give us a
solution to this paradox.
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Method #3

Third Method This time, let the chords be drawn at random and
imagine no rotation or manipulation whatsoever.

I Look at the midpoint of every chord.

I If the chord is longer than one side of the equilateral triangle,
then its midpoint should be within a circle of radius one half
the radius of the larger cicle.

I With this construction, each chord will have its own respective
midpoint, except for diameters, which we know are longer
than the length of a side of the triangle. This seems more fair
because now most chords with the same length are accounted
for, rather than being considered one chord.



Method #3

Third Method This time, let the chords be drawn at random and
imagine no rotation or manipulation whatsoever.

I Look at the midpoint of every chord.

I If the chord is longer than one side of the equilateral triangle,
then its midpoint should be within a circle of radius one half
the radius of the larger cicle.

I With this construction, each chord will have its own respective
midpoint, except for diameters, which we know are longer
than the length of a side of the triangle. This seems more fair
because now most chords with the same length are accounted
for, rather than being considered one chord.



Method #3

Third Method This time, let the chords be drawn at random and
imagine no rotation or manipulation whatsoever.

I Look at the midpoint of every chord.

I If the chord is longer than one side of the equilateral triangle,
then its midpoint should be within a circle of radius one half
the radius of the larger cicle.

I With this construction, each chord will have its own respective
midpoint, except for diameters, which we know are longer
than the length of a side of the triangle. This seems more fair
because now most chords with the same length are accounted
for, rather than being considered one chord.



Method #3

Third Method This time, let the chords be drawn at random and
imagine no rotation or manipulation whatsoever.

I Look at the midpoint of every chord.

I If the chord is longer than one side of the equilateral triangle,
then its midpoint should be within a circle of radius one half
the radius of the larger cicle.

I With this construction, each chord will have its own respective
midpoint, except for diameters, which we know are longer
than the length of a side of the triangle. This seems more fair
because now most chords with the same length are accounted
for, rather than being considered one chord.



I Thus, the probability that a random chord is longer than the
side of the equilateral triangle inscribed in the circle is the
ratio of the area of the smaller triangle to that of the big
triangle.

I
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I r = 1
2R, thus
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I 1/4

This is also a correct solution to the problem.
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Wait, let’s zoom in on that a little bit.





That looks kind of familiar, doesn’t it?





Nah I’m just kidding, they aren’t related at all.



So which one is really the best solution?

I Well, the answer to this question lies not so much in the
answers, but in the question itself.

I According to Bertrand himself, none of the three answers are
correct or incorrect, but ”the question is ill-posed.”

I So what do we conclude?
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Conclusion

The Answer is truly that none are correct or incorrect, technically.

I The purpose of Bertrand’s ”paradox” was to show that there
needs to be certain specifications on what is meant by
random.

I As we can now see, simply saying random is very unspecific.
There are even more ways that we could have searched for the
probability of a ”randomly” drawn chord to be longer than the
length of the equilateral triangle inscribed in the circle.

I Thus, there is no solution, but merely a conclusion; Bertrand
was asking for many different ways of solving the problem.

I Especially in probability, be sure to specify exactly what
the problem is asking, so that there can be no more
than one solution.
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Problem!

1. If we were instead given a circle with a square inside of it,
what would be three different ways to check the probability
that a randomly drawn chord is longer than a side of the
square?


