Some Basic Group Theory with Lagrange's Theorem

Kayla Wright

April 29, 2014

Recall the 4 group properties of some group (G, \bigstar) :

Identity: \exists some element $e \in G$ such that $\forall a \in G$, $a \bigstar e = a$. Inverses: $\forall a \neq e \in G$, \exists a unique number $a^{-1} \in G$ such that $a \bigstar a^{-1} = e$. Associativity: $\forall a, b, c \in G$, $a \bigstar (b \bigstar c) = (a \bigstar b) \bigstar c$. Closure: $\forall a, b \in G$, $a \bigstar b \in G$.

Continuous vs. Finite Groups:

Definitions: As suggested by the name, **finite groups** contain a finite number of elements whereas **continuous groups** contain an infinite number of elements.

Subgroups:

Definitions: A subgroup is a subset of the group (G, \bigstar) and is a group in its own right under the operation \bigstar .

Defining Notation:

Generators:

 A generating set, ⟨a⟩ ∈ G, of a group is a subset such that every element of the group can be expressed as the combination (under the group operation) of finitely many elements of the subset and their inverses.

Order :

► The order of a group, | G | , denotes the number of elements within a group.

Recall Fermat's Little Theorem:

Theorem: • Let p be a prime number. Then $n^p \equiv n \mod p$ for any integer $n \geq 1$.

Two cases:

Either: **>** *p* divides *n*

- Implying that p divides $n^p n$
- YAY :D (Paddy face)
- Or: \blacktriangleright *p* does not divide *n*
 - WE HAVE WORK TO DO

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When *p* does not divide *n*:

Let's begin:

- Consider the group (Z/pZ)[×] and any subset
 [a] ∈ G.
 - Let *o* denote the order of $\langle [a] \rangle$.
 - ▶ We know that whatever generates that subgroup, ⟨[a]⟩ must also be a subgroup of Z_p.

• By the previous theorem, $|\langle [a] \rangle | = k$.

Lemma (Lagrange's Theorem):

- Lemma: If *H* is a subgroup of a finite group *G*....
 - By this theorem, |H| divides |G|.

We will be proving this later!

Applying it to the Problem:

This implies that $\blacktriangleright |\langle [a] \rangle| = |(\mathbb{Z}/p\mathbb{Z})^{\times}|$ And also implies that $\blacktriangleright k$ divides p-1 due to the order of the two groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Now

- By definition of modular congruence: ∃d ∈ Z such that p − 1 = kd.
- From this, we can deduce that $n^k \equiv 1 \mod p$, $\forall n \in [a]$.
- And applying what we know, we can state that $n^{kd} \equiv 1^d \equiv 1 \mod p$.
- ▶ Because we know kd = p − 1, we can arrive at the conclusion that Fermat's Little Theorem is true.

Definiton: ► If H is a subgroup of G and a ∈ G, the coset defined as aH is the subset of G such that aH = {ah | h ∈ H}.

Examples of Cosets:

Consider $\langle \mathbb{Z}, + \rangle$ Let *H* be { $\cdots - 6, -4, -2, 0, 2, 4, 6 \dots$ }

Cosets would look like this...

More on Cosets:

Left or Right > Cosets can be either left or right.

 gH = gh : h an element of H is a left coset of H in G.

- and Hg = hg : h an element of H is a right coset of H in G.
- But For simplicity's sake, we will just consider all cosets for the talk as right cosets

How to Attack the Proof:

Langrange's Theorem: In order to prove Lagrange's Theorem, we will need to prove two parts.

- Lemma 1: All cosets are of equal cardinality.
 - Formally, for a subgroup H, and some element k ∈ H: | H | = | H_k |
- Lemma 2: All the cosets partition the entire group.
 - This statement implies that for two cosets *H_k*, *H_l* for *k*, *l* ∈ *G*, there will be no intersection unless *H_k* = *H_l*.

Proof of Lemma 1:

- Claim: $\blacktriangleright |H| = |H_k|$ for some $k \in G$.
 - Suppose that $|H| \ge |H_k|$ when considering $h, k \forall h \in H$.

- Note that in order to satisfy equality, we know that $h_1 k \neq h_2 k$ and therefore, $h_1 \neq h_2$.
- But!! When inverses are applied, we can manipulate the statement in the following way:
 - $\blacktriangleright h_1 k \neq h_2 k$
 - ▶ $h_1 k k^{-1} \neq h_2 k k^{-1}$
 - ▶ $h_1 \neq h_2$, $\forall k \in H$

Proof of Lemma 2:

- Two cosets are either equal or disjoint.
- Claim: If we take any 2 cosets H_k , H_l for $k, l \in G$. If \exists some $x \in H_k$, H_l , then $H_k = H_l$
- Proof: Take $x = h_1 k = h_2 k$ for some $h_1, h_2 \in H$
 - By applying inverses: h₂⁻¹h₁ = lk⁻¹ and we know that lk⁻¹ ∈ H
 - Take any element $y \in H_k$.
 - Write y = hk for some $h \in H$.
 - Multiply by lk^{-1} and its inverse to obtain $h(lk^{-1})^{-1}lk^{-1}k$.
 - With this, we can deduce that h(lk⁻¹)⁻¹ ∈ H and that lk⁻¹k = l.
 - This means that $y \in H_l$, $(lk^{-1})^{-1} = kl^{-1} \in H$

The Result of the Two Lemmas:

Lagrange's Theorem Who can explain why? This result is very powerful and as shown before, helped prove Fermat's Little Theorem!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Homework Problem:

Music!

	С	C♯		D^{\sharp}	Е	F	F♯	G	G^{\sharp}	
С	С	C♯	D	D^{\sharp}	Ε	F	F♯	G	-	Α
C^{\sharp}	C^{\sharp}	D	D^{\sharp}	Ε	F	F♯	G	G^{\sharp}		A^{\sharp}
D	D	D^{\sharp}	Ε	F	F♯	G	G^{\sharp}	Α	A^{\sharp}	В
D^{\sharp}	D^{\sharp}	Ε	F	F♯	G	G^{\sharp}	Α	A^{\sharp}	В	С
Ε	Ε	F	F♯	G	G^{\sharp}	Α	A^{\sharp}	В	С	C^{\sharp}
F	F	F♯	G	G^{\sharp}	Α	A^{\sharp}	В	С	C♯	D
F♯	F♯	G	G^{\sharp}	Α	A^{\sharp}	В		C♯	D	D^{\sharp}
G	G	G^{\sharp}	Α	A^{\sharp}	В	С	C^{\sharp}	D	D^{\sharp}	Ε
G^{\sharp}	G^{\sharp}	Α	A^{\sharp}	В	С	C [♯]	D	D^{\sharp}	Ε	F
Α	Α	A^{\sharp}	В	С	C♯	D	D^{\sharp}	Ε	F	F♯
A♯	A^{\sharp}	В	С	C♯	D	D^{\sharp}	Ε	F	F♯	G
В	В	С	C [‡]	D	D^{\sharp}	Ε	F	F♯	G	G^{\sharp}

Problem:

- Pick some subgroup H, what are the cosets of H?
- For those with musical background, what does this represent musically?