Homework 8: Voting Systems

Due Monday, week 5
UCSB 2014

For this problem set, we are working with the following conventions:

- \mathbb{A} is some collection $\{A, B, C, \ldots\}$ of at least three options that we want voters to rank.
- For each i, we let R_{i} denote a vote, i.e. a ranking of our options. For example, if $\mathbb{A}=\{A, B, C\}$, then one ranking could be $A>B>C$.
- We denote a collection of n votes $\left(R_{1}, \ldots R_{n}\right)$ via the collection \vec{R}. Each coördinate of this "vector" is a ranking: i.e. \vec{R} denotes things like

$$
((A>B>C),(C>A>B),(C>B>A),(A>B>C))
$$

- We denote the collection of all possible rankings on \mathbb{A} via the symbol \mathcal{R}.
- Finally, we will denote a voting system c as just some function that takes in n votes and outputs some ranking. We formally write this as a function $c: \mathcal{R}^{n} \rightarrow \mathcal{R}$.
- With this set up, we will often look at what $c(\vec{R})$ is for some collection of votes \vec{R} : this is the "output" of the voting system c given the input collection of votes \vec{R}.
- In particular, we will consider a fair voting system c, as defined in class, and study its properties!

Prove at least three of the four claims below.

1. Take any choice A. Prove that there is some value i_{A} such that

- if the first $i_{A}-1$ voters $R_{1}, \ldots R_{i_{A}-1}$ all place A at the bottom of their rankings, and
- the last $n-i_{A}-1$ voters $R_{i_{A}+1}, \ldots R_{n}$ all place A at the top of their rankings,
then the i_{A}-th voter "gets to decide" whether society places A at the top or bottom of its rankings, in the following way: if $R_{i_{A}}$ has A at the top of its rankings, then so does $c(\vec{R})$, and if $R_{i_{A}}$ has A at the bottom of its rankings, then so does $c(\vec{R})$.

2. Take any option A. By using the independence of irrelevant alternatives property, extend problem 1 as follows: suppose that \vec{R} is a collection of votes such that

- the first $i_{A}-1$ voters $R_{1}, \ldots R_{i_{A}-1}$ all place A at the bottom of their rankings, and
- the last $n-i_{A}-1$ voters $R_{i_{A}+1}, \ldots R_{n}$ all place A at the top of their rankings.

Then the i_{A}-th voter actually gets to decide the rankings of many other options, in this sense: if $R_{i_{A}}$ ranks $C>A>B$ for two options $B, C \neq A$, then $C>A>B$ in $c(\vec{R})$.
3. By applying the irrelevance of independent alternative condition again to the result of problem 2 , conclude the following: in any ranking \vec{R}, if C, B are any two non- A options and $C>B$ in $R_{i_{A}}$, then $C>B$ in \vec{R}. In this sense, $R_{i_{A}}$ is a "dictator" for all non- A choices.
4. Take any two choices $A \neq B$, and find i_{A}, i_{B} for those choices. Prove that $i_{A}=i_{B}$. Conclude that $R_{i_{A}}$ is a dictator, and that our voting scheme is a dictatorship.

