Homework 7: Triangulations and NP

Due Friday, week 4
UCSB 2014

Pick two of the problems below, and solve them!

1. In class, we showed that given a formula f from an instance of 3 SAT, we can create a graph G such that G has a triangulation if and only if f is satisfiable. Suppose you have a formula f^{\prime} that's from an instance of 4SAT: i.e. a formula of the form

$$
\left(l_{1,1} \vee l_{1,2} \vee l_{1,3} \vee l_{1,4}\right) \wedge\left(l_{2,1} \vee l_{2,2} \vee l_{2,3} \vee l_{2,4}\right) \wedge \ldots \wedge\left(l_{n, 1} \vee l_{n, 2} \vee l_{n, 3} \vee l_{n, 4}\right) .
$$

Can you create a graph G^{\prime} that has a triangulation whenever f is satisfiable?
2. Take two $H_{3, n}$'s. Create a way to glue these graphs together such that the following happens:

- We can completely triangulate either one of these $H_{3, n}$'s.
- However, doing so makes it impossible to triangulate the other $H_{3, n}$.

3. A 4-cycle decomposition is basically a triangle decomposition, except with squares (i.e. 4 -cycles): i.e. it is a way to break the edges of a graph into disjoint subsets, each one of which forms a 4 -cycle.
(a) Explain why if a graph has a 4-cycle decomposition, the degree of every vertex must be even and the number of edges must be a multiple of 4 .
(b) Find a graph that has every vertex of even degree and its number of edges a multiple of 4 , but does not have a 4 -cycle decomposition.
(c) Find a complete graph K_{n} that has a 4-cycle decomposition.
4. (Trickier.) Generalize problem 3: for any m, find a n such that K_{n} has a m-cycle decomposition.
5. (Open problem!) Our $H_{3, n}$ graphs had the following properties

- Each $H_{3, n}$ graph had exactly two possible triangulations.
- The degree of every vertex in a $H_{3, n}$ was 6 .

Find a family of graphs G_{n} such that

- Each G_{n} graph had exactly two possible triangulations.
- There is some constant C, like say $1 / 2$ or $1 / 6$, such that each vertex has degree $C \cdot|V|$.

In other words, our $H_{3, n}$ graphs were "sparse" graphs, that didn't have many edges, and also had only two triangulations. We want a collection of graphs G such that they are "dense" (i.e. the degree grows linearly in the number of vertices, i.e. every vertex is connected to like $1 / 8$ th of the other vertices or something like that) and yet still only have two triangulations.

