
Math/CCS 103 Professor: Padraic Bartlett

Homework 4: Presentations from Week 2

Due Friday, week 3 UCSB 2014

Homework Problems.

Pick three of the problems below, and solve them!

1. (Alex) Evaluate 33. Estimate the number of digits in 43 and 34. Do you expect 1011 or
1110 to be greater? Justify your answer.

2. (Alex) There are some values of x for which ∞x is a finite number. 1 is a simple example,
because 1 raised to any power is still 1. Either show that for no values x > 1 can ∞x
have a finite value; or if not, find an example of an x that does remain finite, show that
it does, and evalulate ∞x numerically.

3. (Alex) Besides some expressions like 0
0 or ln(0), the power 00 is far less recognized as

something ill-defined. On the one hand, 0 to any positive power is 0, so 00 = 0. On the
other hand, anything to the power 0 must be 1, so 00 = 1. This can be formalized as

lim
x→0

0x = 0

lim
x→0

x0 = 1

Tetration lets us resolve this problem, however – or at least throw another possible
solution into the mix. Noting that 00 = 20, find the limit limx→0

2x, and this should give
us an answer!

4. (Alex) Extending the previous problem, examine the behavior of

lim
x→0

3x

lim
x→0

4x

and try to come up with a general formula for

lim
x→0

nx

5. In a graph G = (V,E), a Hamiltonian cycle is a sequence of vertices and edges
(v1, e12, v2, e23, . . . vn, en1, such that

• each vertex in V shows up in our sequence exactly once, and

• the edges eij are all edges linking vertex vi to vertex vj .

In other words, a Hamiltonian cycle is a tour that starts and stops at the same vertex,
and along the way visits every other vertex exactly once.

1



(a) Find an algorithm that takes in a graph on n vertices and outputs “Y” if it has a
Hamiltonian cycle, and “N” if it does not.

(b) Find a reasonable upper bound on the runtime of your algorithm. (It should be
really big.)

(c) Show that your problem is in NP: i.e. find an describe that will take in an instance
of this “pathing” problem and any “proof” that claims to show that instance is
true, and check in polynomial time whether that solution holds.

6. Take a graph G. We can play a solitaire game, called pebbling, on this graph. We
define this as follows:

• Setup: a graph G. Also, to every vertex of G, we assign some number of “pebbles,”
which we imagine are stacked on top of each vertex.

• Moves: Suppose we have an edge e12 connecting v1 to v2, and another edge e23
connecting v2 and v3. Suppose further that there is a pebble on v1 and v2. We
can then “jump” the pebble v1 over the pebble at v2 to v3: i.e. we can remove one
pebble from each of v1 and v2, and place a pebble on v3.

• A graph is cleared if it has at most one pebble on its board; similarly, we say that
a graph is clearable if there is some sequence of moves that clears it.

(a) Find an algorithm that takes in a graph on n vertices with some number m of
pebbles on its vertices, and outputs “Y” if it is clearable, and “N” if it is not.

(b) Find a reasonable upper bound on the runtime of your algorithm. (It should still
be really big.)

(c) Show that your problem is in NP: i.e. describe an algorithm that will take in an in-
stance of this “clearing” problem and any “proof” that claims to show that instance
is true, and check in polynomial time whether that solution holds.

2


