Homework 2: Algorithms

Due Friday, week 1
UCSB 2014

Homework Problems.

Pick two of the following three problems to solve!

1. Consider the following algorithm (Stoogesort ${ }^{1}$!) for sorting a list:

Algorithm. Take as input a list $L=\left(l_{1}, \ldots l_{n}\right)$.
(a) If your list contains one or two elements, sort it by just looking at the list.
(b) Otherwise, the list contains ≥ 3 elements. Let $M=\lceil 2 n / 3\rceil$.
(c) Stoogesort the list $\left(l_{1}, \ldots l_{m}\right.$.)
(d) Stoogesort the list $\left(l_{n-m+1}, \ldots l_{n}\right)$.
(e) Stoogesort the list $\left(l_{1}, \ldots l_{m}\right.$.)

Create two lists of 7 or so elements and run this algorithm on those lists. Prove that this algorithm sorts any list. Can you find a polynomial $p(n)$, like n^{2} or n^{3}, such that this algorithm has runtine $O(p(n))$?
2. Spaghetti sort is a sorting algorithm that uses spaghetti! We define it here:

Algorithm. Take as input a list $L=\left(l_{1}, \ldots l_{n}\right)$. Also, a box of dried spaghetti and a hand of appropriate size.
(a) Given this list of integers, find the largest integer m in our list.
(b) Define a full piece of spaghetti as m spaghetti-units. Using these units and your box of spaghetti, create a piece of spaghetti of length k for every number k in our list.
(c) Take all of your newly-formed spaghetti-integers, put them in your hand, take them loosely in your hand and lower them to the table, so that they all stand upright, resting on the table surface. They are now sorted by height!
(d) One by one, pick out the shortest rod of spaghetti and write it down on our list. This process orders our list.

What is the runtime of this algorithm? Include your assumptions on how much time it takes you to perform the various steps in this algorithm; i.e. how much effort does each step take? What assumptions are you making about the device that is implementing your sort? Should some steps be regarded as taking longer than others?

[^0]3. Here is a third sorting algorithm, called CycleSort. It works on permutations of $\{1, \ldots n\}$:

Algorithm. Take as input a list $L=\left(l_{1}, \ldots l_{n}\right)$, consisting of the numbers $\{1, \ldots n\}$ under some permutation.
(a) Initialize our algorithm by defining a pair of useful placeholder values: curr, the place in the list we're currently sorting, and temp, which will hold a value we are moving in our list. Set curr $=1$, and don't worry about temp yet.
(b) Look at $l_{\text {curr }}$.
(c) If $l_{\text {curr }}$ is equal to curr itself, then the list element $l_{\text {curr }}$ is in the right place. Proceed according to one of the following two options:
i. If $\operatorname{curr}=n$, our list is sorted and we are done.
ii. Otherwise, set curr $=\operatorname{curr}+1$ and return to (b).
(d) Otherwise, $l_{\text {curr }} \neq$ curr. In this situation, enter the following loop:
i *. Set temp $=l_{\text {curr }}$. Then set $l_{\text {curr }}=$ curr. Finally, set curr $=t e m p$.
ii \star. If $l_{\text {curr }}=$ curr, quit this loop and go to (b).
iii*. Otherwise, return to i*.
Write out a few permutations of $\{1, \ldots 9\}$ and run this algorithm on those lists. What is the runtime of this algorithm? How many times does our algorithm change the value of any entry in our list? (This third property is the cool feature of this algorithm, and is why it sometimes sees use in practical settings.)

[^0]: ${ }^{1}$ Named after the comedy routines of the Three Stooges; specifically, the ones where each stooge hits the other two.

