Math/CCS 103	Professor: Padraic Bartlett
Homework 13: Presentations (Taom, Mao and Yukang)	
Due Friday, week 7	UCSB 2014

Do two of the five problems below!

1. (Taom) Indirect self reference is when an object "subtly" refers to itself.

Jokes are great for getting a (informal) feel of this. For example, an indirectly selfreferencing joke would be

A duck, a frog, and a mathematician walk into a bar. The bartender says "What is this, some kind of joke?"

Oppose this to a directly self-referencing joke:

A duck, a frog, and a mathematician walk into a bar. The bartender says "What can I get you?"
The duck says "Grapes!"
The frog says "Kiwi!"
The mathematician hesitates, then glances around, confused. After a moment he says, "I don't think I'm supposed to be in this joke."

In the direct joke we immediately see the self reference - it is explicit. The indirect joke requires more thought.
Write two jokes that indirectly self reference themselves and two jokes that directly self reference themselves. Briefly explain why each joke has indirect/direct self reference.
2. (Taom) Quining is an indirect form a self reference and is central to Gödel's proof. To quine a phrase is to precede the phrase by itself. For example, take the phrase

```
is a sentence fragment
```

Quining this gives
"is a sentence fragment" is a sentence fragment

Another example is
"when quined, makes quite a statement" when quined, makes quite a statement

Much like how "this statement is false" creates a paradox when we try to decide if it's true or false, we can use quined statements to create similar paradoxes.

Do this - find a quined statement that creates a paradox.
3. (Taom) The Paddy-Bat problem is the following:

We have three symbols: P (Paddy), J (the Joker), and B (Batman). These symbols can be combined to form strings under the following axioms:
(a) The string PJ exists.
(b) We can add B to the end of any string ending in J. (ex. PJ \Longrightarrow PJB.)
(c) We can double the string after the P . That is, we can change $\mathrm{P} x$, to $\mathrm{P} x x$. (ex. PJB \Longrightarrow PJBJB.)
(d) We can replace any JJJ with a B. (ex. PBJJJB \Longrightarrow PBBB.)
(e) We can remove any BB . (ex. $\mathrm{PBBB} \Longrightarrow$ PB.)

Together these axioms form theory * Any string of the form $\mathrm{P} x$ is called a theorem. Any string we can create from our axioms is said to be provable in theory . (For example, PJB is provable - we apply axiom 1 and then axiom 2.)
The question: is the theorem PB provable in theory $*$
4. (Mao) Create a 6×6 magic square.
5. (Yukang) In my talk, we discussed the probability that out of n people, there are two that share the same birthday. What is the probability that out of n people, there are two pairs of people that share the same birthday? How about three pairs of people?

