Math/CCS 103

Homework 12: Presentations (Zihan, Kayla and Declan) Due Friday, week 6 UCSB 2014

Do two of the five problems below!

- 1. (a) (Zihan) Calculate the value of the Legendre symbol $\left(\frac{-32}{97}\right)$.
 - (b) (Zihan) Is there any solution to the congruence $x^2 \equiv 5 \mod 227$?

Hints: Here are some special formulas for the Legendre symbol $\left(\frac{a}{p}\right)$ for small values:

- $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$.
- $(\frac{2}{p}) = (-1)^{\frac{p^2 1}{8}}.$
- For an odd number prime $p \neq 3$, $\left(\frac{3}{p}\right) = (-1)^{\frac{p+1}{6}}$.
- 2. (Declan) What is the minimum number of guards sufficient to see every point of the interior of an n-vertex simple polygon if those guards are half-guards? Which means they are fixed 180° field of vision.
- 3. (Declan) What is the minimum number of guards sufficient to see every point of the interior of an n-vertex simple polygon if each guard is also visible to at least one other guard? What about they are in an orthogonal art gallery?
- 4. (Declan) Can you prove any claim about the minimum number of guards sufficient to see every point of the interior of an orthogonal art gallery with h-holes and n-vertex?
- 5. (Kayla) Music! Specifically: consider the following table, which gives us a way to turn musical notes into a group:

+	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B
C	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B
C^{\sharp}	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C
D	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}
D^{\sharp}	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D
E	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}
F	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E
F^{\sharp}	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F
G	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}
G^{\sharp}	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G
A	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}
A^{\sharp}	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A
B	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}

- (a) Explain why this is a group.
- (b) Find all of the possible subgroups of this group.
- (c) Is there a nice musical interpretation for any of these subgroups? How about for their cosets?