
Math/CCS 103 Professor: Padraic Bartlett

Homework 1: Algorithms

Due Friday, week 1 UCSB 2014

Homework Problems.

Pick two of the following three problems to solve!

1. The Towers of Hanoi is the following puzzle: Start with 3 rods. On one rod, place n
disks with radii 1, 2, . . . n, so that the disk with radius n is on the bottom, the disk with
radius n− 1 is on top of that disk, and so on/so forth.

The goal of this puzzle is to move all of the disks from one rod to another rod, obeying
the following rules:

• You can move only one disk at a time.

• Each move consists of taking the top disk off of some rod and placing it on another
rod.

• You cannot place a disk A on top of any disk B with radius smaller than A.

Find a recursive algorithm for solving this puzzle! How long does it take to complete
your solution? Suppose that you can perform a move once every second, and you can
perform moves until the heat death of the universe (10100 years, say.) What is the largest
puzzle you can solve?

2. Suppose you have a stack of n pancakes of different sizes. You want to sort these pancakes
so that smaller pancakes are on top of larger pancakes!

However, the only tool you have to do this is a spatula. The spatula can flip pancakes,
as described here:

• Suppose we have a stack of pancakes. Write this stack as an ordered list (p1, . . . pn),
where the first element in our list is at the bottom, the second is directly on top of
the first, and so on/so forth.

1



• We can insert our spatula at any point in the stack. From there, we can flip all
of the entries above where we put our spatula. For example, suppose we have the
stack (p1, p2, p3, p4, p5, p6). We could insert our spatula between pancakes p3 and
p4, and flip the stack (p4, p5, p6) to get the new arrangement

(p1, p2, p3, p6, p5, p4).

(Fun fact: the one and only research paper written by Bill Gates studied this problem.)
Describe an algorithm to sort an arbitrary stack of n pancakes, using as few flips as
possible. How many flips does your algorithm need, in the worst-case scenario?

3. Consider the following algorithm designed to sort a list of numbers:

Algorithm. Take as input some list L = (l1, . . . ln) of objects, along with some operation
≤ that can compare any two of these elements. Perform the following algorithm:

(a) Create a integer variable loc and a boolean variable didSwap.

(b) Set the variable loc to 1, and didSwap to false.

(c) While the variable loc is < n, perform the following steps:

i. If lloc > lloc+1, swap the two elements lloc, lloc+1 in our list and set didSwap to
true.

ii. Regardless of whether you swapped elements or not, add 1 to the variable loc,
and go to 3.

(d) If didSwap is true, then go to 2.

(e) Otherwise, if didSwap is false, we went through our entire list and never found
any pair of consecutive elements such that the second was larger than the first.
Therefore, our list is sorted! Output our list.

What is the complexity (i.e. runtime) of this algorithm? (Assume that a list of n numbers
is considered to have input size n.)

2


