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Definitions - Pronunciations!

Euler: “Oiler”
Planar: “Plainer”
Chi, x: "Kai"



Definitions - Notation

For any graph, G, we say that G has:
> V vertices
» E edges
> f faces

Note that the infinite space around a graph counts as an additional
face.



Definitions - Planar Graph

A Planar Graph is any 2D graph that has edges that do not cross.



Definitions - Formula

Mathematician Leonard Euler found that, for finite, connected,
planar graphs,
V—_E+F=2

We call 2 the Euler Characteristic x of a planar graph. In general:

x=V-E+F



Proof for Planar Graphs

So, we know that x = 2 for planar graphs. Why is this true?



Proof for Planar Graphs

So, we know that x = 2 for planar graphs. Why is this true?

Proof by induction:
Take a graph with one vertex:



Proof for Planar Graphs

So, we know that x = 2 for planar graphs. Why is this true?

Proof by induction:
Take a graph with one vertex:

This graph has no edges, so it is trivially connected and planar. In
this graph,

x=V—-E+F=(1)-(0)+(1) =2



Proof for Planar Graphs

There are two ways to add an edge to this graph:



Proof for Planar Graphs

There are two ways to add an edge to this graph:
» Add another vertex and connect the two together: (V + 1)
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Proof for Planar Graphs

There are two ways to add an edge to this graph:
» Add another vertex and connect the two together: (V + 1)

» Draw an edge from our vertex to itself: (F + 1)

In either situation, the additions even out in our formula.

x1=(V+1)—(E4+1)+F

CV_E+4+F=2
X2=V—(E+1)+(F+1)} +



Proof for Planar Graphs

What is to stop us from continuing to do this?



Proof for Planar Graphs

What is to stop us from continuing to do this?

Absolutely nothing! In fact, we can create any planar graph with
this method.

Imagine some arbitrarily large planar graph. If we add to this graph
by one of our two methods, then we still have y = 2. Through
induction, we have showed that any planar graph must have

x = 2.



Proof for Polyhedra

Euler's findings are not limited to 2D graphs. It is proven that
x = 2 for convex, simple! polyhedra as well.
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!Simple polyhedra have no holes in them, i.e. a torus is not simple.



Proof for Polyhedra

Cauchy'’s Proof: Take a polyhedron. Remove one of its faces.
Looking at this empty face, “pull” the graph apart, creating a
planar graph corresponding to the polyhedron. Since the resultant
graph is planar, it must have x = 2! An example is shown below

for a cube.




Proof for Polyhedra

Cauchy’s Proof: Take a polyhedron. Remove one of its faces.
Looking at this empty face, “pull” the graph apart, creating a
planar graph corresponding to the polyhedron. Since the resultant
graph is planar, it must have x = 2! An example is shown below

for a cube.

As it turns out, we don't care that we removed a face because it
corresponds to the empty space around the planar graph.



Insight into other shapes

Remember the triangulation of a torus we used in class? We can
use this triangulation to find the Euler characteristic of that torus!
Take H3’3.



Insight into other shapes

Remember the triangulation of a torus we used in class? We can
use this triangulation to find the Euler characteristic of that torus!
Take H3’3.

V=9, E=27and F =18, so x = (12) — (36) + (24) =0



Why we care!

We care about the Euler Characteristic because it is a topological
invariant.

That is, it is a property that holds no matter how you distort a
shape. We call two spaces homeomorphic if one can be distorted
to make the other.



Why we care!

We care about the Euler Characteristic because it is a topological
invariant.

That is, it is a property that holds no matter how you distort a
shape. We call two spaces homeomorphic if one can be distorted
to make the other.

For example, all of our simple, convex polyhedra are homeomorphic
to a sphere. Imagine “inflating” them until they are round.
Therefore, since x is a topological invariant and they all have

X = 2, a sphere has x = 2 as well.




Homework Questions

(Eric R.) A Soccer ball is made out of pentagons and hexagons
that are stitched together. Given that a sphere has a Euler
characteristic of 2, derive the number of hexagons and pentagons
on the ball.

(Eric R.) Expansion of the Utilities Problem:

» There are three neighbors, and all of them want to connect to
gas, water, and electricity. Is there a way for them all to do so
such that no connection crosses another? Prove this is not
possible.

» Find a shape on which it is possible, and explain why it works
in terms of the Euler characteristic.
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VVYyVYVYVYYVYY

http://plus.maths.org/content/eulers-polyhedron-formula
http://en.wikipedia.org/wiki/Euler_characteristic
http://www.math.cornell.edu/~riley / Teaching / Topology2009 /essays/Kalyanswamy.pdf
http://www.math.rutgers.edu/~erowland /images/platonicsolids.gif
http://mathworld.wolfram.com/Topology.html
http://d2gbom735ivs5c.cloudfront.net/m/geometry /images/sphere-icosa.jpg

http://www.mathsisfun.com/geometry/eulers-formula.html



